Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • Log out
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Polysialic acid engineering: synthesis of polysialylated neoglycosphingolipids by using the polysialyltransferase from neuroinvasive Escherichia coli K1

J W Cho and F A Troy 2nd
PNAS November 22, 1994 91 (24) 11427-11431; https://doi.org/10.1073/pnas.91.24.11427
J W Cho
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F A Troy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The CMP-sialic acid:poly alpha 2,8sialosyl sialyltransferase (polyST) in neurotropic Escherichia coli K1 inner membranes catalyzes synthesis of the alpha 2,8-linked polysialic acid capsule. The capsule is a neurovirulent determinant associated with neonatal meningitis in humans. A functionally similar polyST in human neuroblastomas polysialylates neural cell adhesion molecules. While bacteria do not synthesize glycosphingolipids (GSLs), we report here that the E. coli K1 polyST can selectively polysialylate several structurally related GSLs, when added as exogenous sialyl acceptors. A structural feature common to the preferred sialyl acceptors (GD3 > GT1a > GQ1b = GT1b > GD2 = GD1b = GD1a > GM1) was the disialyl glycotope, Sia alpha 2,8Sia, alpha 2,3-linked to galactose (Sia is sialic acid). A linear tetrasaccharide with a terminal Sia residue (e.g., GD3) was the minimum length oligosaccharide recognized by the polyST. Endo-N-acylneuraminidase was used to confirm the alpha 2,8-specific polysialylation of GSL. Ceramide glycanase was used to release the polysialyllactose chains from the ceramide moiety. Size analysis of these chains showed that 60-80 Sia residues were transferred to the disialyllactose moiety of GD3. The significance of these findings is two-fold. (i) The E. coli K1 polyST can be used as a synthetic reagent to enzymatically engineer the glycosyl moiety of GSL, thus creating oligo- or polysialylated GSLs. Such "designer" GSLs may have potentially important biological and pharmacological properties. (ii) The use of GSLs as exogenous sialyl acceptors increases the sensitivity of detecting polyST activity. The practical advantage of this finding is that polyST activity can be identified and studied in those eukaryotic cells that express low levels of this developmentally regulated enzyme and/or its acceptor.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Polysialic acid engineering: synthesis of polysialylated neoglycosphingolipids by using the polysialyltransferase from neuroinvasive Escherichia coli K1
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
Citation Tools
Polysialic acid engineering: synthesis of polysialylated neoglycosphingolipids by using the polysialyltransferase from neuroinvasive Escherichia coli K1
J W Cho, F A Troy
Proceedings of the National Academy of Sciences Nov 1994, 91 (24) 11427-11431; DOI: 10.1073/pnas.91.24.11427

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Polysialic acid engineering: synthesis of polysialylated neoglycosphingolipids by using the polysialyltransferase from neuroinvasive Escherichia coli K1
J W Cho, F A Troy
Proceedings of the National Academy of Sciences Nov 1994, 91 (24) 11427-11431; DOI: 10.1073/pnas.91.24.11427
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 116 (49)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Info & Metrics
  • PDF

You May Also be Interested in

Modulating the body's networks could become mainstream therapy for many health issues. Image credit: The Feinstein Institutes for Medicine Research.
Core Concept: The rise of bioelectric medicine sparks interest among researchers, patients, and industry
Modulating the body's networks could become mainstream therapy for many health issues.
Image credit: The Feinstein Institutes for Medicine Research.
Adaptations in heart structure and function likely enabled endurance and survival in preindustrial humans. Image courtesy of Pixabay/Skeeze.
Human heart evolved for endurance
Adaptations in heart structure and function likely enabled endurance and survival in preindustrial humans.
Image courtesy of Pixabay/Skeeze.
Viscoelastic carrier fluids enhance retention of fire retardants on wildfire-prone vegetation. Image courtesy of Jesse D. Acosta.
Viscoelastic fluids and wildfire prevention
Viscoelastic carrier fluids enhance retention of fire retardants on wildfire-prone vegetation.
Image courtesy of Jesse D. Acosta.
Water requirements may make desert bird declines more likely in a warming climate. Image courtesy of Sean Peterson (photographer).
Climate change and desert bird collapse
Water requirements may make desert bird declines more likely in a warming climate.
Image courtesy of Sean Peterson (photographer).
QnAs with NAS member and plant biologist Sheng Yang He. Image courtesy of Sheng Yang He.
Featured QnAs
QnAs with NAS member and plant biologist Sheng Yang He
Image courtesy of Sheng Yang He.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Classics
  • Front Matter
  • Teaching Resources
  • Anthropology
  • Chemistry
  • Physics
  • Sustainability Science

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2019 National Academy of Sciences. Online ISSN 1091-6490