Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • Log out
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Perception of Rhizobium nodulation factors by tomato cells and inactivation by root chitinases

C Staehelin, J Granado, J Müller, A Wiemken, R B Mellor, G Felix, M Regenass, W J Broughton, and T Boller
PNAS March 15, 1994 91 (6) 2196-2200; https://doi.org/10.1073/pnas.91.6.2196
C Staehelin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Granado
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Müller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Wiemken
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R B Mellor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Felix
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Regenass
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W J Broughton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Boller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The bacterial genera Rhizobium and Bradyrhizobium, nitrogen-fixing symbionts of legumes, secrete specific lipo-chitooligosaccharides that induce the formation of nodules on their host plants. When preparations of such nodulation-inducing factors (Nod factors) were added to suspension-cultured tomato cells, a rapid and transient alkalinization of the culture medium occurred. Lipo-oligosaccharide preparations from Rhizobium or Bradyrhizobium treated with flavonoids, known inducers of Nod factor synthesis, were up to 100 times more potent in inducing alkalinization than the ones from untreated bacteria. The activity was absent from preparations of the mutant strain Rhizobium sp. NGR234 delta nodABC, unable to produce any Nod factors. Preparations of Nod factors from various bacteria as well as individual, highly purified Nod factors from Rhizobium sp. NGR(pA28) induced alkalinization in the tomato cell cultures at nanomolar concentrations. This demonstrates that Nod factors can be perceived by tomato, a nonhost of rhizobia. Using the alkalinization response as a sensitive bioassay, Nod factors were found to be inactivated by plant chitinases. Root chitinases purified from different legumes differed in their potential to inactivate differently substituted Nod factors produced by Rhizobium sp. NGR(pA28). This indicates that the specificity of the bacterium-host plant interaction may be due, at least in part, to differential inactivation of Nod factors by root chitinases.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Perception of Rhizobium nodulation factors by tomato cells and inactivation by root chitinases
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
Citation Tools
Perception of Rhizobium nodulation factors by tomato cells and inactivation by root chitinases
C Staehelin, J Granado, J Müller, A Wiemken, R B Mellor, G Felix, M Regenass, W J Broughton, T Boller
Proceedings of the National Academy of Sciences Mar 1994, 91 (6) 2196-2200; DOI: 10.1073/pnas.91.6.2196

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Perception of Rhizobium nodulation factors by tomato cells and inactivation by root chitinases
C Staehelin, J Granado, J Müller, A Wiemken, R B Mellor, G Felix, M Regenass, W J Broughton, T Boller
Proceedings of the National Academy of Sciences Mar 1994, 91 (6) 2196-2200; DOI: 10.1073/pnas.91.6.2196
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 116 (49)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Info & Metrics
  • PDF

You May Also be Interested in

Modulating the body's networks could become mainstream therapy for many health issues. Image credit: The Feinstein Institutes for Medicine Research.
Core Concept: The rise of bioelectric medicine sparks interest among researchers, patients, and industry
Modulating the body's networks could become mainstream therapy for many health issues.
Image credit: The Feinstein Institutes for Medicine Research.
Adaptations in heart structure and function likely enabled endurance and survival in preindustrial humans. Image courtesy of Pixabay/Skeeze.
Human heart evolved for endurance
Adaptations in heart structure and function likely enabled endurance and survival in preindustrial humans.
Image courtesy of Pixabay/Skeeze.
Viscoelastic carrier fluids enhance retention of fire retardants on wildfire-prone vegetation. Image courtesy of Jesse D. Acosta.
Viscoelastic fluids and wildfire prevention
Viscoelastic carrier fluids enhance retention of fire retardants on wildfire-prone vegetation.
Image courtesy of Jesse D. Acosta.
Water requirements may make desert bird declines more likely in a warming climate. Image courtesy of Sean Peterson (photographer).
Climate change and desert bird collapse
Water requirements may make desert bird declines more likely in a warming climate.
Image courtesy of Sean Peterson (photographer).
QnAs with NAS member and plant biologist Sheng Yang He. Image courtesy of Sheng Yang He.
Featured QnAs
QnAs with NAS member and plant biologist Sheng Yang He
Image courtesy of Sheng Yang He.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Classics
  • Front Matter
  • Teaching Resources
  • Anthropology
  • Chemistry
  • Physics
  • Sustainability Science

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2019 National Academy of Sciences. Online ISSN 1091-6490