New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Electric-field-induced Schiff-base deprotonation in D85N mutant bacteriorhodopsin

Abstract
The application of an external electric field to dry films of Asp-85-->Asn mutant bacteriorhodopsin causes deprotonation of the Schiff base, resulting in a shift of the optical absorption maximum from 600 nm to 400 nm. This is in marked contrast to the case of wild-type bacteriorhodopsin films, in which electric fields produce a red-shifted product whose optical properties are similar to those of the acid-blue form of the protein. This difference is due to the much weaker binding of the Schiff-base proton in the mutant protein, as indicated by its low pK of approximately 9, as compared with the value pK approximately 13 in the wild type. Other bacteriorhodopsins with lowered Schiff-base pK values should also exhibit a field-induced shift in the protonation equilibrium of the Schiff base. We propose mechanisms to account for these observations.