Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Rice (Oryza sativa) centromeric regions consist of complex DNA

Fenggao Dong, Joseph T. Miller, Scott A. Jackson, Guo-Liang Wang, Pamela C. Ronald, and Jiming Jiang
  1. *Department of Horticulture, University of Wisconsin, Madison, WI 53706; and †Department of Plant Pathology, University of California, Davis, CA 95616

See allHide authors and affiliations

PNAS July 7, 1998 95 (14) 8135-8140; https://doi.org/10.1073/pnas.95.14.8135
Fenggao Dong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joseph T. Miller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Scott A. Jackson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Guo-Liang Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pamela C. Ronald
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jiming Jiang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Communicated by S. J. Peloquin, University of Wisconsin, Madison, WI (received for review March 5, 1998)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Online Impact

 

Article Information

vol. 95 no. 14 8135-8140
DOI: 
https://doi.org/10.1073/pnas.95.14.8135
PubMed: 
9653153

Published By: 
National Academy of Sciences
Print ISSN: 
0027-8424
Online ISSN: 
1091-6490
History: 
  • Received March 5, 1998
  • Accepted May 6, 1998
  • Published July 7, 1998.

Copyright & Usage: 
Copyright © 1998, The National Academy of Sciences

Author Information

  1. Fenggao Dong*,
  2. Joseph T. Miller*,
  3. Scott A. Jackson*,
  4. Guo-Liang Wang†‡,
  5. Pamela C. Ronald†, and
  6. Jiming Jiang*§
  1. *Department of Horticulture, University of Wisconsin, Madison, WI 53706; and †Department of Plant Pathology, University of California, Davis, CA 95616
  1. Communicated by S. J. Peloquin, University of Wisconsin, Madison, WI (received for review March 5, 1998)

Footnotes

    • ↵‡ Present address: Institute of Molecular Agrobiology, The National University of Singapore, Singapore 118240.

    • ↵§ To whom reprint requests should be addressed. e-mail: jjiang1{at}facstaff.wisc.edu.

    • Data deposition: The sequences reported in this paper have been deposited in the GenBank database (accession nos. AF058901–AF058906).

    Cited By...

    • 170 Citations
    • 110 Citations
    • Google Scholar

    This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

    • The map-based sequence of the rice genome
      Takuji Sasaki
      Nature 2005 436 7052
    • Sequencing of a rice centromere uncovers active genes
      Kiyotaka Nagaki, Zhukuan Cheng, Shu Ouyang, Paul B Talbert, Mary Kim, Kristine M Jones, Steven Henikoff, C Robin Buell, Jiming Jiang
      Nature Genetics 2004 36 2
    • The genome sequence and structure of rice chromosome 1
      Takuji Sasaki, Takashi Matsumoto, Kimiko Yamamoto, Katsumi Sakata, Tomoya Baba, Yuichi Katayose, Jianzhong Wu, Yoshihito Niimura, Zhukuan Cheng, Yoshiaki Nagamura, Baltazar A. Antonio, Hiroyuki Kanamori, Satomi Hosokawa, Masatoshi Masukawa, Koji Arikawa, Yoshino Chiden, Mika Hayashi, Masako Okamoto, Tsuyu Ando, Hiroyoshi Aoki, Kohei Arita, Masao Hamada, Chizuko Harada, Saori Hijishita, Mikiko Honda, Yoko Ichikawa, Atsuko Idonuma, Masumi Iijima, Michiko Ikeda, Maiko Ikeno, Sachie Ito, Tomoko Ito, Yuichi Ito, Yukiyo Ito, Aki Iwabuchi, Kozue Kamiya, Wataru Karasawa, Satoshi Katagiri, Ari Kikuta, Noriko Kobayashi, Izumi Kono, Kayo Machita, Tomoko Maehara, Hiroshi Mizuno, Tatsumi Mizubayashi, Yoshiyuki Mukai, Hideki Nagasaki, Marina Nakashima, Yuko Nakama, Yumi Nakamichi, Mari Nakamura, Nobukazu Namiki, Manami Negishi, Isamu Ohta, Nozomi Ono, Shoko Saji, Kumiko Sakai, Michie Shibata, Takanori Shimokawa, Ayahiko Shomura, Jianyu Song, Yuka Takazaki, Kimihiro Terasawa, Kumiko Tsuji, Kazunori Waki, Harumi Yamagata, Hiroko Yamane, Shoji Yoshiki, Rie Yoshihara, Kazuko Yukawa, Huisun Zhong, Hisakazu Iwama, Toshinori Endo, Hidetaka Ito, Jang Ho Hahn, Ho-Il Kim, Moo-Young Eun, Masahiro Yano, Jiming Jiang, Takashi Gojobori
      Nature 2002 420 6913
    • Sequence and analysis of rice chromosome 4
      Qi Feng, Yujun Zhang, Pei Hao, Shengyue Wang, Gang Fu, Yucheng Huang, Ying Li, Jingjie Zhu, Yilei Liu, Xin Hu, Peixin Jia, Yu Zhang, Qiang Zhao, Kai Ying, Shuliang Yu, Yesheng Tang, Qijun Weng, Lei Zhang, Ying Lu, Jie Mu, Yiqi Lu, Lei S. Zhang, Zhen Yu, Danlin Fan, Xiaohui Liu, Tingting Lu, Can Li, Yongrui Wu, Tongguo Sun, Haiyan Lei, Tao Li, Hao Hu, Jianping Guan, Mei Wu, Runquan Zhang, Bo Zhou, Zehua Chen, Ling Chen, Zhaoqing Jin, Rong Wang, Haifeng Yin, Zhen Cai, Shuangxi Ren, Gang Lv, Wenyi Gu, Genfeng Zhu, Yuefeng Tu, Jia Jia, Yi Zhang, Jie Chen, Hui Kang, Xiaoyun Chen, Chunyan Shao, Yun Sun, Qiuping Hu, Xianglin Zhang, Wei Zhang, Lijun Wang, Chunwei Ding, Haihui Sheng, Jingli Gu, Shuting Chen, Lin Ni, Fenghua Zhu, Wei Chen, Lefu Lan, Ying Lai, Zhukuan Cheng, Minghong Gu, Jiming Jiang, Jiayang Li, Guofan Hong, Yongbiao Xue, Bin Han
      Nature 2002 420 6913
    • Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research
      R. S. Singh, Jiming Jiang, Bikram S. Gill
      Genome 2006 49 9
    • A molecular view of plant centromeres
      Jiming Jiang, James A Birchler, Wayne A Parrott, R Kelly Dawe
      Trends in Plant Science 2003 8 12
    • The MITE family Heartbreaker (Hbr): Molecular markers in maize
      A. M. Casa, C. Brouwer, A. Nagel, L. Wang, Q. Zhang, S. Kresovich, S. R. Wessler
      Proceedings of the National Academy of Sciences 2000 97 18
    • Stable barley chromosomes without centromeric repeats
      S. Nasuda, S. Hudakova, I. Schubert, A. Houben, T. R. Endo
      Proceedings of the National Academy of Sciences 2005 102 28
    • From The Cover: Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species
      H.-R. Lee, W. Zhang, T. Langdon, W. Jin, H. Yan, Z. Cheng, J. Jiang
      Proceedings of the National Academy of Sciences 2005 102 33
    • Sequencing and de novo assembly of a near complete indica rice genome
      Huilong Du, Ying Yu, Yanfei Ma, Qiang Gao, Yinghao Cao, Zhuo Chen, Bin Ma, Ming Qi, Yan Li, Xianfeng Zhao, Jing Wang, Kunfan Liu, Peng Qin, Xin Yang, Lihuang Zhu, Shigui Li, Chengzhi Liang
      Nature Communications 2017 8 1
    • Centromere identity from the DNA point of view
      Miroslav Plohl, Nevenka Meštrović, Brankica Mravinac
      Chromosoma 2014 123 4
    • Physical maps and recombination frequency of six rice chromosomes
      Jianzhong Wu, Hiroshi Mizuno, Mika Hayashi-Tsugane, Yukiyo Ito, Yoshino Chiden, Masaki Fujisawa, Satoshi Katagiri, Shoko Saji, Shoji Yoshiki, Wataru Karasawa, Rie Yoshihara, Akiko Hayashi, Harumi Kobayashi, Kazue Ito, Masao Hamada, Masako Okamoto, Maiko Ikeno, Yoko Ichikawa, Yuichi Katayose, Masahiro Yano, Takashi Matsumoto, Takuji Sasaki
      The Plant Journal 2003 36 5
    • Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species
      Ki-Byung Lim, Tae-Jin Yang, Yoon-Jung Hwang, Jung Sun Kim, Jee-Young Park, Soo-Jin Kwon, JinA Kim, Beom-Soon Choi, Myung-Ho Lim, Mina Jin, Ho-Il Kim, Hans de Jong, Ian Bancroft, YongPyo Lim, Beom-Seok Park
      The Plant Journal 2007 49 2
    • Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes
      S. Sharma, S.N. Raina
      Cytogenetic and Genome Research 2005 109 1-3
    • Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres
      Zhao Liu, Wei Yue, Dayong Li, Richard R.-C. Wang, Xiuying Kong, Kun Lu, Guixiang Wang, Yushen Dong, Weiwei Jin, Xueyong Zhang
      Chromosoma 2008 117 5
    • DNA and proteins of plant centromeres
      Andreas Houben, Ingo Schubert
      Current Opinion in Plant Biology 2003 6 6
    • Meiotic Transmission of an In Vitro–Assembled Autonomous Maize Minichromosome
      Shawn R Carlson, Gary W Rudgers, Helge Zieler, Jennifer M Mach, Song Luo, Eric Grunden, Cheryl Krol, Gregory P Copenhaver, Daphne Preuss, Joseph R Ecker
      PLoS Genetics 2007 3 10
    • The holocentric speciesLuzula elegansshows interplay between centromere and large-scale genome organization
      Stefan Heckmann, Jiri Macas, Katrin Kumke, Jörg Fuchs, Veit Schubert, Lu Ma, Petr Novák, Pavel Neumann, Stefan Taudien, Matthias Platzer, Andreas Houben
      The Plant Journal 2013 73 4
    • Retand: a novel family of gypsy-like retrotransposons harboring an amplified tandem repeat
      Eduard Kejnovsky, Zdenek Kubat, Jiri Macas, Roman Hobza, Jaroslav Mracek, Boris Vyskot
      Molecular Genetics and Genomics 2006 276 3
    • Centromeres of filamentous fungi
      Kristina M. Smith, Jonathan M. Galazka, Pallavi A. Phatale, Lanelle R. Connolly, Michael Freitag
      Chromosome Research 2012 20 5
    • Wheat centromeric retrotransposons: the new ones take a major role in centromeric structure
      Baochun Li, Frédéric Choulet, Yanfang Heng, Weiwei Hao, Etienne Paux, Zhao Liu, Wei Yue, Weiwei Jin, Catherine Feuillet, Xueyong Zhang
      The Plant Journal 2013 73 6
    • The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres
      T. Zhang, P. B. Talbert, W. Zhang, Y. Wu, Z. Yang, J. G. Henikoff, S. Henikoff, J. Jiang
      Proceedings of the National Academy of Sciences 2013 110 50
    • Chromosomal polymorphism of ribosomal genes in the genus Oryza
      Mei-Chu Chung, Yung-I Lee, Yueh-Yun Cheng, Yi-Jia Chou, Chia-Fu Lu
      Theoretical and Applied Genetics 2008 116 6
    • OsDMC1 is required for homologous pairing in Oryza sativa
      Zhu-Yun Deng, Tai Wang
      Plant Molecular Biology 2007 65 1-2
    • Transcription and Evolutionary Dynamics of the Centromeric Satellite Repeat CentO in Rice
      Hye-Ran Lee, Pavel Neumann, Jiri Macas, Jiming Jiang
      Molecular Biology and Evolution 2006 23 12
    • In-depth sequence analysis of the tomato chromosome 12 centromeric region: identification of a large CAA block and characterization of pericentromere retrotranposons
      Tae-Jin Yang, Seunghee Lee, Song-Bin Chang, Yeisoo Yu, Hans de Jong, Rod A. Wing
      Chromosoma 2005 114 2
    • A centromeric DNA sequence colocalized with a centromere-specific histone H3 in tobacco
      Kiyotaka Nagaki, Kazunari Kashihara, Minoru Murata
      Chromosoma 2009 118 2
    • Physical Arrangement of Retrotransposon-Related Repeats in Centromeric Regions of Wheat
      Kazu-Nori Fukui, Go Suzuki, Evans S. Lagudah, Sadequr Rahman, Rudi Appels, Maki Yamamoto, Yasuhiko Mukai
      Plant and Cell Physiology 2001 42 2
    • Transformation of rice with long DNA-segments consisting of random genomic DNA or centromere-specific DNA
      Bao H. Phan, Weiwei Jin, Christopher N. Topp, Cathy X. Zhong, Jiming Jiang, R. Kelly Dawe, Wayne A. Parrott
      Transgenic Research 2007 16 3
    • Structure and genomic organization of centromeric repeats in Arabidopsis species
      A. Kawabe, S. Nasuda
      Molecular Genetics and Genomics 2005 272 6
    • Development and annotation of perennial Triticeae ESTs and SSR markers
      Perry Gustafson, B. Shaun Bushman, Steve R. Larson, Ivan W. Mott, Paul F. Cliften, Richard R.-C. Wang, N. Jerry Chatterton, Alvaro G. Hernandez, Shahjahan Ali, Ryan W. Kim, Jyothi Thimmapuram, George Gong, Lei Liu, Mark A. Mikel
      Genome 2008 51 10
    • CEREALCHROMOSOMESTRUCTURE, EVOLUTION, ANDPAIRING
      Graham Moore
      Annual Review of Plant Physiology and Plant Molecular Biology 2000 51 1
    • Sequence Organization and Functional Annotation of Human Centromeres
      M.K. RUDD, M.G. SCHUELER, H.F. WILLARD
      Cold Spring Harbor Symposia on Quantitative Biology 2003 68
    • Construction of BAC and BIBAC libraries from sunflower and identification of linkage group-specific clones by overgo hybridization
      Jiuhuan Feng, Brady A. Vick, Mi-Kyung Lee, Hong-Bin Zhang, C. C. Jan
      Theoretical and Applied Genetics 2006 113 1
    • Molecular Cytogenetic Characterization of theAntirrhinum majusGenome
      Dongfen Zhang, Qiuying Yang, Weidong Bao, Yu Zhang, Bin Han, Yongbiao Xue, Zhukuan Cheng
      Genetics 2005 169 1
    • Rice as a model for centromere and heterochromatin research
      Huihuang Yan, Jiming Jiang
      Chromosome Research 2007 15 1
    • Atypical centromeres in plants—what they can tell us
      Maria Cuacos, F. Chris H. Franklin, Stefan Heckmann
      Frontiers in Plant Science 2015 6
    • Molecular analysis of holocentric centromeres of <i>Luzula</i> species
      T. Haizel, Y.K. Lim, A.R. Leitch, G. Moore
      Cytogenetic and Genome Research 2005 109 1-3
    • Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea
      Trung D. Tran, Hieu X. Cao, Gabriele Jovtchev, Pavel Neumann, Petr Novák, Miloslava Fojtová, Giang T.H. Vu, Jiří Macas, Jiří Fajkus, Ingo Schubert, Joerg Fuchs
      The Plant Journal 2015 84 6
    • Diversity of centromeric repeats in two closely related wild rice species, Oryza officinalis and Oryza rhizomatis
      Weidong Bao, Wenli Zhang, Qiuying Yang, Yu Zhang, Bin Han, Minghong Gu, Yongbiao Xue, Zhukuan Cheng
      Molecular Genetics and Genomics 2006 275 5
    • An integrated map of Oryza sativa L. chromosome 5
      Fang-I Kao, Yueh-Yun Cheng, Teh-Yuan Chow, Hong-Hwa Chen, Shu-Mei Liu, Chia-Hsiung Cheng, Mei-Chu Chung
      Theoretical and Applied Genetics 2006 112 5
    • Centromeric chromatin and its dynamics in plants
      Inna Lermontova, Michael Sandmann, Martin Mascher, Anne-Catherine Schmit, Marie-Edith Chabouté
      The Plant Journal 2015 83 1
    • Digital mapping of bacterial artificial chromosomes by fluorescence in situ hybridization
      Scott A. Jackson, Fenggao Dong, Jiming Jiang
      The Plant Journal 1999 17 5
    • Diversity of a Complex Centromeric Satellite and Molecular Characterization of Dispersed Sequence Families in Sugar Beet (Beta vulgaris)
      Gerhard Menzel, Daryna Dechyeva, Torsten Wenke, Daniela Holtgräwe, Bernd Weisshaar, Thomas Schmidt
      Annals of Botany 2008 102 4
    • Instability of bacterial artificial chromosome (BAC) clones containing tandemly repeated DNA sequences
      Junqi Song, Fenggao Dong, Jason W Lilly, Robert M Stupar, Jiming Jiang
      Genome 2001 44 3
    • Chromosome painting and its applications in cultivated and wild rice
      Lili Hou, Meng Xu, Tao Zhang, Zhihao Xu, Weiyun Wang, Jianxiang Zhang, Meimei Yu, Wen Ji, Cenwen Zhu, Zhiyun Gong, Minghong Gu, Jiming Jiang, Hengxiu Yu
      BMC Plant Biology 2018 18 1
    • Genes controlling plant growth habit in Leymus (Triticeae): maize barren stalk1 (ba1), rice lax panicle, and wheat tiller inhibition (tin3) genes as possible candidates
      Parminder Kaur, Steven R. Larson, B. Shaun Bushman, Richard R.-C. Wang, Ivan W. Mott, David Hole, Jyothi Thimmapuram, George Gong, Lei Liu
      Functional & Integrative Genomics 2008 8 4
    • Genus-specific localization of the TaiI family of tandem-repetitive sequences in either the centromeric or subtelomeric regions in Triticeae species (Poaceae) and its evolution in wheat
      Masahiro Kishii, Hisashi Tsujimoto
      Genome 2002 45 5
    • Plant transposable elements, with an emphasis on grass species
      Fran�ois Sabot, Delphine Simon, Michel Bernard
      Euphytica 2004 139 3
    • The pericentromeric heterochromatin of the grass Zingeria biebersteiniana (2n = 4) is composed of Zbcen1-type tandem repeats that are intermingled with accumulated dispersedly organized sequences
      Verity A Saunders, Andreas Houben
      Genome 2001 44 6
    • Comparative genetics at the gene and chromosome levels between rice (Oryza sativa) and wildrice (Zizania palustris)
      B. L. Hass, J. C. Pires, R. Porter, R. L. Phillips, S. A. Jackson
      Theoretical and Applied Genetics 2003 107 5
    • Investigation of genome polymorphism and seed coat anatomy of species of section Adenolinum from the genus Linum
      Olga Yu. Yurkevich, Alena A. Naumenko-Svetlova, Nadezhda L. Bolsheva, Tatiana E. Samatadze, Olga A. Rachinskaya, Anna V. Kudryavtseva, Daria A. Zelenina, Alexander A. Volkov, Alexander V. Zelenin, Olga V. Muravenko
      Genetic Resources and Crop Evolution 2013 60 2
    • The compact Brachypodium genome conserves centromeric regions of a common ancestor with wheat and rice
      Lili Qi, Bernd Friebe, Jiajie Wu, Yongqiang Gu, Chen Qian, Bikram S. Gill
      Functional & Integrative Genomics 2010 10 4
    • Cytogenetics in the age of molecular genetics
      Peng Zhang, Bernd Friebe, Bikram Gill, R. F. Park
      Australian Journal of Agricultural Research 2007 58 6
    • A direct repeat sequence associated with the centromeric retrotransposons in wheat
      Hidetaka Ito, Shuhei Nasuda, Takashi R Endo
      Genome 2004 47 4
    • Chromosomal localization and evolution of satellite DNAs and heterochromatin in grasses (Poaceae), especially tribe Aveneae
      G. Winterfeld, M. Röser
      Plant Systematics and Evolution 2007 264 1-2
    • Recent advances in rice genome and chromosome structure research by fluorescence <i>in situ</i> hybridization (FISH)
      Nobuko OHMIDO, Kiichi FUKUI, Toshiro KINOSHITA
      Proceedings of the Japan Academy, Series B 2010 86 2
    • Calculation of binding length of base-specific DNA dyes by comparison of sequence and flow cytometric data. Application to Oryza sativa and Arabidopsis thaliana
      Armin Meister
      Journal of Theoretical Biology 2005 232 1
    • Divergence in centromere structure distinguishes related genomes in Coix lacryma-jobi and its wild relative
      Yonghua Han, Guixiang Wang, Zhao Liu, Jinhua Liu, Wei Yue, Rentao Song, Xueyong Zhang, Weiwei Jin
      Chromosoma 2010 119 1
    • Variation in rDNA locus number and position among legume species and detection of 2 linked rDNA loci in the model Medicago truncatula by FISH
      Mona Abirached-Darmency, Emilce Prado-Vivant, Liudmila Chelysheva, Thomas Pouthier
      Genome 2005 48 3
    • Evolutionary dynamics and chromosomal distribution of repetitive sequences on chromosomes of Aegilops speltoides revealed by genomic in situ hybridization
      Alexander Belyayev, Olga Raskina, Eviatar Nevo
      Heredity 2001 86 6
    • Patterns of tandem repetition in plant whole genome assemblies
      Rafael Navajas-Pérez, Andrew H. Paterson
      Molecular Genetics and Genomics 2009 281 6
    • Amplification and adaptation of centromeric repeats in polyploid switchgrass species
      Xueming Yang, Hainan Zhao, Tao Zhang, Zixian Zeng, Pingdong Zhang, Bo Zhu, Yonghua Han, Guilherme T. Braz, Michael D. Casler, Jeremy Schmutz, Jiming Jiang
      New Phytologist 2018 218 4
    • Isolation of centromeric-tandem repetitive DNA sequences by chromatin affinity purification using a HaloTag7-fused centromere-specific histone H3 in tobacco
      Kiyotaka Nagaki, Fukashi Shibata, Asaka Kanatani, Kazunari Kashihara, Minoru Murata
      Plant Cell Reports 2012 31 4
    • Plant Centromere Biology
      Stefan Heckmann, Andreas Houben
      2013
    • Dual‐color oligo‐FISH can reveal chromosomal variations and evolution in Oryza species
      Xiaoyu Liu, Shang Sun, Ying Wu, Yong Zhou, Siwei Gu, Hengxiu Yu, Chuandeng Yi, Minghong Gu, Jiming Jiang, Bao Liu, Tao Zhang, Zhiyun Gong
      The Plant Journal 2020 101 1
    • A Molecular-Cytogenetic Method for Locating Genes to Pericentromeric Regions Facilitates a Genomewide Comparison of Synteny Between the Centromeric Regions of Wheat and Rice
      Lili Qi, Bernd Friebe, Peng Zhang, Bikram S. Gill
      Genetics 2009 183 4
    • Sequence organization and evolutionary dynamics of Brachypodium-specific centromere retrotransposons
      L. L. Qi, J. J. Wu, B. Friebe, C. Qian, Y. Q. Gu, D. L. Fu, B. S. Gill
      Chromosome Research 2013 21 5
    • The molecular characterization of maize B chromosome specific AFLPs
      Zhong Xia QI, Hui ZENG, Xiu Lan LI, Cheng Bin CHEN, Wen Qin SONG, Rui Yang CHEN
      Cell Research 2002 12 1
    • A fine physical map of the rice chromosome 5
      Chia-Hsiung Cheng, Mei-Chu Chung, Shu-Mei Liu, Shi-Kuang Chen, Fang-Yi Kao, Shu-Jen Lin, Shin-Hsin Hsiao, I-Chieh Tseng, Yue-Ie C. Hsing, Hong-Pang Wu, Ching-San Chen, Jei-Fu Shaw, Jianzhong Wu, Takashi Matsumoto, Takuji Sasaki, Hong-Hwa Chen, Teh-Yuan Chow
      Molecular Genetics and Genomics 2005 274 4
    • Centromere targeting of alien CENH3s in Arabidopsis and tobacco cells
      Kiyotaka Nagaki, Kaori Terada, Munenori Wakimoto, Kazunari Kashihara, Minoru Murata
      Chromosome Research 2010 18 2
    • Fiber FISH reveals different patterns of high-resolution physical mapping for repetitive DNA in fish
      Alain Victor de Barros, Thaís Saad Sczepanski, Josefa Cabrero, Juan Pedro M. Camacho, Marcelo Ricardo Vicari, Roberto Ferreira Artoni
      Aquaculture 2011 322-323
    • Variation in Copy Number of Ty3/Gypsy Centromeric Retrotransposons in the Genomes of Thinopyrum intermedium and Its Diploid Progenitors
      Mikhail G. Divashuk, Thi Mai L. Khuat, Pavel Yu. Kroupin, Ilya V. Kirov, Dmitry V. Romanov, Anna V. Kiseleva, Ludmila I. Khrustaleva, Dmitry G. Alexeev, Alexandr S. Zelenin, Marina V. Klimushina, Olga V. Razumova, Gennady I. Karlov, Khalil Kashkush
      PLOS ONE 2016 11 4
    • Identification and Preliminary Analysis of Several Centromere-associated Bacterial Artificial Chromosome Clones from a Diploid Wheat Library
      Zhao Liu, Wei Yue, Yu-Shen Dong, Xue-Yong Zhang
      Journal of Integrative Plant Biology 2006 48 3
    • Centromere
      Kiyotaka Nagaki, Jason Walling, Cory Hirsch, Jiming Jiang, Minoru Murata
      2009 48
    • Encyclopedia of Molecular Cell Biology and Molecular Medicine
      Kristina M. Smith, Pallavi A. Phatale, Erin L. Bredeweg, Lanelle R. Connolly, Kyle R. Pomraning, Michael Freitag
      2012
    • Functional and Structural Divergence of an Unusual LTR Retrotransposon Family in Plants
      Dongying Gao, Jose C. Jimenez-Lopez, Aiko Iwata, Navdeep Gill, Scott A. Jackson, Jianwei Zhang
      PLoS ONE 2012 7 10
    • Identification and diversity of functional centromere satellites in the wild rice species Oryza brachyantha
      Chuandeng Yi, Wenli Zhang, Xibin Dai, Xing Li, Zhiyun Gong, Yong Zhou, Guohua Liang, Minghong Gu
      Chromosome Research 2013 21 8
    • Movement ability of rye terminal neocentromeres
      M.J. Puertas, R. García-Chico, E. Sotillo, M. González-Sánchez, S. Manzanero
      Cytogenetic and Genome Research 2005 109 1-3
    • Plant Chromatin Dynamics
      Václaclav Bačovský, Roman Hobza, Boris Vyskot
      2018 1675
    • Cereal Genomics
      Alan H. Schulman, Pushpendra K. Gupta, Rajeev K. Varshney
      2005
    • Cereal Genomics
      Rajeev K. Varshney, Viktor Korzun, Andreas Börner
      2005
    • Rice Genomics, Genetics and Breeding
      Hiroshi Mizuno, Takashi Matsumoto, Jianzhong Wu
      2018
    • Species-specific accumulation of interspersed sequences in genus Saccharum
      Shigeki Nakayama
      Genes & Genetic Systems 2004 79 6
    • Where Does the Accurate Rice Genome Sequence Lead Us?
      Takuji Sasaki, Baltazar Antonio
      Plant Molecular Biology 2005 59 1
    • ChIP-cloning analysis uncovers centromere-specific retrotransposons in Brassica nigra and reveals their rapid diversification in Brassica allotetraploids
      Gui-xiang Wang, Qun-yan He, Hong Zhao, Ze-xi Cai, Ning Guo, Mei Zong, Shuo Han, Fan Liu, Wei-wei Jin
      Chromosoma 2019 128 2
    • Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore
      Dandan Lang, Shilai Zhang, Pingping Ren, Fan Liang, Zongyi Sun, Guanliang Meng, Yuntao Tan, Xiaokang Li, Qihua Lai, Lingling Han, Depeng Wang, Fengyi Hu, Wen Wang, Shanlin Liu
      GigaScience 2020 9 12
    • Evolutionary dynamics and chromosomal distribution of repetitive sequences on chromosomes of Aegilops speltoides revealed by genomic in situ hybridization
      Alexander Belyayev, Olga Raskina, Eviatar Nevo
      Heredity 2001 86 6
    • Plant Genome Diversity Volume 1
      Cory D. Hirsch, Jiming Jiang
      2012
    • Genetic Resources, Chromosome Engineering, and Crop Improvement
      Chao-Chien Jan, Gerald Seiler
      2006 20062839
    • Plant Cytogenetics
      James A. Birchler, Zhi Gao, Fangpu Han
      2012
    • Centromeres under Pressure: Evolutionary Innovation in Conflict with Conserved Function
      Elisa Balzano, Simona Giunta
      Genes 2020 11 8
    • Development of a quantitative pachytene chromosome map and its unification with somatic chromosome and linkage maps of rice (Oryza sativa L.)
      Nobuko Ohmido, Aiko Iwata, Seiji Kato, Toshiyuki Wako, Kiichi Fukui, Zhukuan Cheng
      PLOS ONE 2018 13 4
    • Generating of rice OsCENH3-GFP transgenic plants and their genetic applications
      HengXiu Yu, Xin Wang, ZhiYun Gong, Ding Tang, MingHong Gu, ZhuKuan Cheng
      Science Bulletin 2008 53 19
    • Molecular and Cytological Characterization of Centromeric Retrotransposons in a Wild Relative of Rice, Oryza granulata
      Dongying Gao, Zhiyun Gong, Rod A. Wing, Jiming Jiang, Scott A. Jackson
      Tropical Plant Biology 2011 4 3-4
    • Novartis Foundation Symposium 236 - Rice Biotechnology: Improving Yield, Stress Tolerance and Grain Quality
      Gernot G. Presting, Muhammad A. Budiman, Todd Wood, Yeisoo Yu, Hye-Ran Kim, Jose Luis Goicoechea, Eric Fang, Barbara Blackman, Jiming Jiang, Sung-Sick Woo, Ralph A. Dean, David Frisch, Rod A. Wing
      2007
    • Plant Centromere Biology
      Jiming Jiang
      2013
    • Progress in Botany
      Renate Horn, Rod Snowdon, Barbara Kusterer
      2002 63
    • Structural and functional organization of centromeres in plant chromosomes
      O. G. Silkova, D. B. Loginova
      Russian Journal of Genetics 2014 50 12
    • Survey of transposable elements from rice genomic sequences
      Kime Turcotte, Sujatha Srinivasan, Thomas Bureau
      The Plant Journal 2008 25 2
    • Evolutionary dynamics of transposable elements and satellite DNAs in polyploid Spartina species
      Delphine Giraud, Oscar Lima, Virginie Huteau, Olivier Coriton, Julien Boutte, Ales Kovarik, Andrew R. Leitch, Ilia J. Leitch, Malika Aïnouche, Armel Salmon
      Plant Science 2021 302
    • Functional Genomics
      Graham J. King
      2002
    • Genetics and Genomics of Rice
      Aiko Iwata, Dongying Gao, Nobuko Ohmido, Scott A. Jackson
      2013
    • Model Plants and Crop Improvement
      Baltazar Antonio, Takuji Sasaki
      2006
    • Plant Centromere Biology
      Lili Qi, Bernd Friebe, Bikram S. Gill
      2013
    • Plant Meiosis
      Pilar Prieto, Tomás Naranjo
      2020 2061
    • Principles and Practices of Plant Genomics, Volume 3
      Kevin Childs, Shu Ouyang
      2010
    • Rice Improvement in the Genomics Era
      B Valent, Y Jia
      2008
    • Rice Research for Quality Improvement: Genomics and Genetic Engineering
      Anindita Paul
      2020
    • Visualizing Meiotic Chromosome Pairing and Segregation in Interspecific Hybrids of Rice by Genomic in situ Hybridization
      Liu Mao-Sen, Tseng Shih-Hsuan, Chen Ting-Chu, Chung Mei-Chu
      Rice Science 2021 28 1

    Article usage

    Article usage: January 1999 to March 2021

    AbstractFullPdf
    Jan 199961012
    Feb 19990107
    Mar 199921810
    Apr 19996107
    May 1999367
    Jun 1999355
    Jul 1999488
    Aug 19991108
    Sep 199922011
    Oct 1999278
    Nov 199972214
    Dec 199951114
    Total 199941137111
    Jan 200021828
    Feb 20001138
    Mar 200071416
    Apr 200032527
    May 200011217
    Jun 20000413
    Jul 20004811
    Aug 2000577
    Sep 200052112
    Oct 200071216
    Nov 200001016
    Dec 20006728
    Total 200041151199
    Jan 200181516
    Feb 200111411
    Mar 200191121
    Apr 2001121915
    May 2001121112
    Jun 200191415
    Jul 2001132236
    Aug 2001131630
    Sep 2001172735
    Oct 2001121512
    Nov 200181426
    Dec 200110919
    Total 2001124187248
    Jan 2002113520
    Feb 200272715
    Mar 2002142822
    Apr 2002101115
    May 200211522
    Jun 2002491820
    Jul 200221820
    Aug 2002101619
    Sep 200271920
    Oct 2002161817
    Nov 2002213127
    Dec 2002111326
    Total 2002188229243
    Jan 200391921
    Feb 20031058
    Mar 2003153323
    Apr 2003231125
    May 2003131528
    Jun 2003121215
    Jul 2003283518
    Aug 2003141720
    Sep 2003332841
    Oct 2003274053
    Nov 2003192820
    Dec 2003193030
    Total 2003222273302
    Jan 2004202518
    Feb 2004272050
    Mar 2004313339
    Apr 2004333245
    May 2004293644
    Jun 2004223925
    Jul 2004292211
    Aug 2004325514
    Sep 2004322922
    Oct 2004294614
    Nov 2004133521
    Dec 2004272825
    Total 2004324400328
    Jan 200522429
    Feb 2005184223
    Mar 2005282323
    Apr 2005142217
    May 2005243925
    Jun 2005133127
    Jul 2005221117
    Aug 2005252830
    Sep 2005284123
    Oct 2005261610
    Nov 2005352116
    Dec 2005413618
    Total 2005296352238
    Jan 200632398
    Feb 2006263013
    Mar 2006182618
    Apr 2006254121
    May 2006232521
    Jun 200612910
    Jul 2006161016
    Aug 2006271720
    Sep 2006282216
    Oct 2006193017
    Nov 2006234227
    Dec 200615359
    Total 2006264326196
    Jan 2007173217
    Feb 2007123210
    Mar 2007242934
    Apr 2007141220
    May 2007161121
    Jun 200711719
    Jul 2007347
    Aug 200717616
    Sep 20071288
    Oct 2007212421
    Nov 2007151620
    Dec 20071139
    Total 2007173184202
    Jan 200851212
    Feb 2008101024
    Mar 2008111813
    Apr 2008341217
    May 2008332124
    Jun 2008291419
    Jul 200857823
    Aug 200847012
    Sep 200891613
    Oct 2008561312
    Nov 200868713
    Dec 20084187
    Total 2008482129189
    Jan 200930911
    Feb 20092369
    Mar 2009421120
    Apr 200918713
    May 20092568
    Jun 200912108
    Jul 200924562
    Aug 200934411
    Sep 20092468
    Oct 200932410
    Nov 20092939
    Dec 2009241214
    Total 200931783183
    Jan 201012826
    Feb 201023108
    Mar 20102685
    Apr 20102287
    May 20102588
    Jun 20101969
    Jul 2010311516
    Aug 2010141212
    Sep 20102384
    Oct 2010211517
    Nov 20103198
    Dec 20101364
    Total 2010260113124
    Jan 2011967
    Feb 201110115
    Mar 201114109
    Apr 2011221310
    May 201117722
    Jun 20117614
    Jul 201116617
    Aug 201122612
    Sep 20119129
    Oct 2011221331
    Nov 201128411
    Dec 201131114
    Total 201120795161
    Jan 201220510
    Feb 201222715
    Mar 201254820
    Apr 201222914
    May 201222827
    Jun 201231717
    Jul 201216213
    Aug 201211610
    Sep 201213116
    Oct 201225116
    Nov 201227527
    Dec 201220122
    Total 201228360207
    Jan 201326923
    Feb 201313013
    Mar 201316325
    Apr 201319114
    May 201324213
    Jun 201316211
    Jul 201314314
    Aug 20132516
    Sep 20132139
    Oct 20131048
    Nov 201317166
    Dec 201312106
    Total 201321354148
    Jan 20141313
    Feb 201419311
    Mar 201414512
    Apr 201474312
    May 2014281016
    Jun 20142464
    Jul 20142057
    Aug 201420206
    Sep 20141612112
    Oct 201426222
    Nov 20141951
    Dec 20142267
    Total 201437314793
    Jan 201512416
    Feb 20151155
    Mar 20151575
    Apr 201518411
    May 2015924
    Jun 20151939
    Jul 20151614
    Aug 201513712
    Sep 201526135
    Oct 20152355
    Nov 201518311
    Dec 20152035
    Total 20152005792
    Jan 201612311
    Feb 20161207
    Mar 201624517
    Apr 20162056
    May 20161975
    Jun 2016883
    Jul 20161297
    Aug 20161035
    Sep 20161566
    Oct 201625113
    Nov 20164463
    Dec 20161858
    Total 20162196881
    Jan 201715710
    Feb 20171077
    Mar 201717816
    Apr 201727753
    May 201725128
    Jun 201712710
    Jul 2017201010
    Aug 20171798
    Sep 20172129
    Oct 20171394
    Nov 20171176
    Dec 20171376
    Total 201720192147
    Jan 2018861
    Feb 2018892
    Mar 2018743
    Apr 201819161
    May 201817181
    Jun 201822102
    Jul 201816140
    Aug 201820235
    Sep 201813140
    Oct 201872410
    Nov 201813011
    Dec 201810339
    Total 201814820145
    Jan 20196159
    Feb 20195198
    Mar 2019122417
    Apr 20194359
    May 20194283
    Jun 201952410
    Jul 201932912
    Aug 201942415
    Sep 20192264
    Oct 20193507
    Nov 20194215
    Dec 20193289
    Total 201955323108
    Jan 202053913
    Feb 20203264
    Mar 202012912
    Apr 20202112
    May 20201182
    Jun 20206244
    Jul 20203197
    Aug 202032912
    Sep 202075210
    Oct 202054112
    Nov 202074710
    Dec 20206519
    Total 20204938697
    Jan 202110446
    Feb 202163313
    Mar 20212121
    Total 2021188920
    Total469841363762
    PreviousNext
    Back to top
    Article Alerts
    Email Article

    Thank you for your interest in spreading the word on PNAS.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Rice (Oryza sativa) centromeric regions consist of complex DNA
    (Your Name) has sent you a message from PNAS
    (Your Name) thought you would like to see the PNAS web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Rice (Oryza sativa) centromeric regions consist of complex DNA
    Fenggao Dong, Joseph T. Miller, Scott A. Jackson, Guo-Liang Wang, Pamela C. Ronald, Jiming Jiang
    Proceedings of the National Academy of Sciences Jul 1998, 95 (14) 8135-8140; DOI: 10.1073/pnas.95.14.8135

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Request Permissions
    Share
    Rice (Oryza sativa) centromeric regions consist of complex DNA
    Fenggao Dong, Joseph T. Miller, Scott A. Jackson, Guo-Liang Wang, Pamela C. Ronald, Jiming Jiang
    Proceedings of the National Academy of Sciences Jul 1998, 95 (14) 8135-8140; DOI: 10.1073/pnas.95.14.8135
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Mendeley logo Mendeley
    Table of Contents

    Submit

    Sign up for Article Alerts

    Jump to section

    • Article
      • Abstract
      • MATERIALS AND METHODS
      • RESULTS
      • DISCUSSION
      • Acknowledgments
      • Footnotes
      • ABBREVIATIONS
      • References
    • Figures & SI
    • Info & Metrics
    • PDF

    You May Also be Interested in

    Setting sun over a sun-baked dirt landscape
    Core Concept: Popular integrated assessment climate policy models have key caveats
    Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
    Image credit: Witsawat.S.
    Model of the Amazon forest
    News Feature: A sea in the Amazon
    Did the Caribbean sweep into the western Amazon millions of years ago, shaping the region’s rich biodiversity?
    Image credit: Tacio Cordeiro Bicudo (University of São Paulo, São Paulo, Brazil), Victor Sacek (University of São Paulo, São Paulo, Brazil), and Lucy Reading-Ikkanda (artist).
    Syrian archaeological site
    Journal Club: In Mesopotamia, early cities may have faltered before climate-driven collapse
    Settlements 4,200 years ago may have suffered from overpopulation before drought and lower temperatures ultimately made them unsustainable.
    Image credit: Andrea Ricci.
    Steamboat Geyser eruption.
    Eruption of Steamboat Geyser
    Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
    Listen
    Past PodcastsSubscribe
    Birds nestling on tree branches
    Parent–offspring conflict in songbird fledging
    Some songbird parents might improve their own fitness by manipulating their offspring into leaving the nest early, at the cost of fledgling survival, a study finds.
    Image credit: Gil Eckrich (photographer).

    Similar Articles

    Site Logo
    Powered by HighWire
    • Submit Manuscript
    • Twitter
    • Facebook
    • RSS Feeds
    • Email Alerts

    Articles

    • Current Issue
    • Special Feature Articles – Most Recent
    • List of Issues

    PNAS Portals

    • Anthropology
    • Chemistry
    • Classics
    • Front Matter
    • Physics
    • Sustainability Science
    • Teaching Resources

    Information

    • Authors
    • Editorial Board
    • Reviewers
    • Subscribers
    • Librarians
    • Press
    • Site Map
    • PNAS Updates
    • FAQs
    • Accessibility Statement
    • Rights & Permissions
    • About
    • Contact

    Feedback    Privacy/Legal

    Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490