Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

The role of dynamic palmitoylation in Ca2+ channel inactivation

Joyce H. Hurley, Anne L. Cahill, Kevin P. M. Currie, and Aaron P. Fox
PNAS August 1, 2000 97 (16) 9293-9298; https://doi.org/10.1073/pnas.160589697
Joyce H. Hurley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anne L. Cahill
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kevin P. M. Currie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Aaron P. Fox
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Harald Reuter, University of Bern, Bern, Switzerland, and approved June 5, 2000 (received for review January 3, 2000)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

N- and P/Q-type Ca2+ channels regulate a number of critical physiological processes including synaptic transmission and hormone secretion. These Ca2+ channels are multisubunit proteins, consisting of a pore-forming α1, and accessory β and α2δ subunits each encoded by multiple genes and splice variants. β subunits alter current amplitude and kinetics. The β2a subunit is associated with slowed inactivation, an effect that requires the palmitoylation of two N-terminal cysteine residues in β2a. In the current manuscript, we studied steady state inactivation properties of native N- and P/Q-type Ca2+ channels and recombinant N-type Ca2+ channels. When bovine α1B and β2a and human α2δ were coexpressed in tsA 201 cells, we observed significant variations in inactivation; some cells exhibited virtually no inactivation as the holding potential was altered whereas others exhibited significant inactivation. A similar variability in inactivation was observed in native channels from bovine chromaffin cells. In individual chromaffin cells, the amount of inactivation exhibited by N-type channels was correlated with the inactivation of P/Q-type channels, suggesting a shared mechanism. Our results with recombinant channels with known β subunit composition indicated that inactivation could be dynamically regulated, possibly by alterations in β subunit palmitoylation. Tunicamycin, which inhibits palmitoylation, increased steady-state inactivation of Ca2+ channels in chromaffin cells. Cerulenin, another drug that inhibits palmitoylation, also increased inactivation. Tunicamycin produced a similar effect on recombinant N-type Ca2+ channels containing β2a but not β2b or β2a subunits mutated to be palmitoylation deficient. Our results suggest that Ca2+ channels containing β2a subunits may be regulated by dynamic palmitoylation.

Footnotes

    • ↵* To whom reprint requests should be addressed at: Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Drive MS 4053, Indianapolis, IN 46202.

    • This paper was submitted directly (Track II) to the PNAS office.

    • Article published online before print: Proc. Natl. Acad. Sci. USA, 10.1073/pnas.160589697.

    • Article and publication date are at www.pnas.org/cgi/doi/10.1073/pnas.160589697

  • Abbreviations

    HP,
    holding potential;
    ω-Cgtx GVIA,
    ω-conotoxin GVIA;
    ICa,
    calcium current
    • Received January 3, 2000.
    • Copyright © The National Academy of Sciences
    View Full Text
    PreviousNext
    Back to top
    Article Alerts
    Email Article

    Thank you for your interest in spreading the word on PNAS.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    The role of dynamic palmitoylation in Ca2+ channel inactivation
    (Your Name) has sent you a message from PNAS
    (Your Name) thought you would like to see the PNAS web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    The role of dynamic palmitoylation in Ca2+ channel inactivation
    Joyce H. Hurley, Anne L. Cahill, Kevin P. M. Currie, Aaron P. Fox
    Proceedings of the National Academy of Sciences Aug 2000, 97 (16) 9293-9298; DOI: 10.1073/pnas.160589697

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Request Permissions
    Share
    The role of dynamic palmitoylation in Ca2+ channel inactivation
    Joyce H. Hurley, Anne L. Cahill, Kevin P. M. Currie, Aaron P. Fox
    Proceedings of the National Academy of Sciences Aug 2000, 97 (16) 9293-9298; DOI: 10.1073/pnas.160589697
    Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Mendeley logo Mendeley
    Proceedings of the National Academy of Sciences: 97 (16)
    Table of Contents

    Submit

    Sign up for Article Alerts

    Jump to section

    • Article
      • Abstract
      • Methods
      • Results
      • Discussion
      • Acknowledgments
      • Footnotes
      • Abbreviations
      • References
    • Figures & SI
    • Info & Metrics
    • PDF

    You May Also be Interested in

    Abstract depiction of a guitar and musical note
    Science & Culture: At the nexus of music and medicine, some see disease treatments
    Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
    Image credit: Shutterstock/agsandrew.
    Large piece of gold
    News Feature: Tracing gold's cosmic origins
    Astronomers thought they’d finally figured out where gold and other heavy elements in the universe came from. In light of recent results, they’re not so sure.
    Image credit: Science Source/Tom McHugh.
    Dancers in red dresses
    Journal Club: Friends appear to share patterns of brain activity
    Researchers are still trying to understand what causes this strong correlation between neural and social networks.
    Image credit: Shutterstock/Yeongsik Im.
    White and blue bird
    Hazards of ozone pollution to birds
    Amanda Rodewald, Ivan Rudik, and Catherine Kling talk about the hazards of ozone pollution to birds.
    Listen
    Past PodcastsSubscribe
    Goats standing in a pin
    Transplantation of sperm-producing stem cells
    CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
    Image credit: Jon M. Oatley.

    Similar Articles

    Site Logo
    Powered by HighWire
    • Submit Manuscript
    • Twitter
    • Facebook
    • RSS Feeds
    • Email Alerts

    Articles

    • Current Issue
    • Special Feature Articles – Most Recent
    • List of Issues

    PNAS Portals

    • Anthropology
    • Chemistry
    • Classics
    • Front Matter
    • Physics
    • Sustainability Science
    • Teaching Resources

    Information

    • Authors
    • Editorial Board
    • Reviewers
    • Librarians
    • Press
    • Site Map
    • PNAS Updates

    Feedback    Privacy/Legal

    Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490