Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Guanylyl cyclase C agonists regulate progression through the cell cycle of human colon carcinoma cells

G. M. Pitari, M. D. Di Guglielmo, J. Park, S. Schulz, and S. A. Waldman
PNAS July 3, 2001 98 (14) 7846-7851; https://doi.org/10.1073/pnas.141124698
G. M. Pitari
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. D. Di Guglielmo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Park
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Schulz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. A. Waldman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Robert F. Furchgott, State University of New York Downstate Medical Center, Brooklyn, NY, and approved May 8, 2001 (received for review March 13, 2001)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

The effects of Escherichia coli heat-stable enterotoxin (ST) and uroguanylin were examined on the proliferation of T84 and Caco2 human colon carcinoma cells that express guanylyl cyclase C (GC-C) and SW480 human colon carcinoma cells that do not express this receptor. ST or uroguanylin inhibited proliferation of T84 and Caco2 cells, but not SW480 cells, in a concentration-dependent fashion, assessed by quantifying cell number, cell protein, and [3H]thymidine incorporation into DNA. These agonists did not inhibit proliferation by induction of apoptosis, assessed by TUNEL (terminal deoxynucleotidyl transferase-mediated dNTP-biotin nick end labeling of DNA fragments) assay and DNA laddering, or necrosis, assessed by trypan blue exclusion and lactate dehydrogenase release. Rather, ST prolonged the cell cycle, assessed by flow cytometry and [3H]thymidine incorporation into DNA. The cytostatic effects of GC-C agonists were associated with accumulation of intracellular cGMP, mimicked by the cell-permeant analog 8-Br-cGMP, and reproduced and potentiated by the cGMP-specific phosphodiesterase inhibitor zaprinast but not the inactive ST analog TJU 1-103. Thus, GC-C agonists regulate the proliferation of intestinal cells through cGMP-dependent mechanisms by delaying progression of the cell cycle. These data suggest that endogenous agonists of GC-C, such as uroguanylin, may play a role in regulating the balance between epithelial proliferation and differentiation in normal intestinal physiology. Therefore, GC-C ligands may be novel therapeutic agents for the treatment of patients with colorectal cancer.

Footnotes

    • ↵‡ To whom reprint requests should be addressed at: Division of Clinical Pharmacology, Thomas Jefferson University, 1100 Walnut Street, 811 Medical Office Building, Philadelphia, PA 19107. E-mail: gmpitari{at}yahoo.com.

    • This paper was submitted directly (Track II) to the PNAS office.

  • Abbreviations

    [cGMP]i, intracellular cGMP,
    GC-C, guanylyl cyclase C;
    IBMX,
    3-isobutyl-1-methylxanthine;
    PI,
    propidium iodide;
    PDE,
    phosphodiesterase;
    PKG II,
    cGMP-dependent protein kinase II;
    ST,
    Escherichia coli heat-stable enterotoxin;
    TUNEL,
    terminal deoxynucleotidyltransferase-mediated dNTP-biotin nick end labeling of DNA fragments;
    EMEM,
    Eagle's minimal essential medium
    • Received March 13, 2001.
    • Copyright © 2001, The National Academy of Sciences
    View Full Text
    PreviousNext
    Back to top
    Article Alerts
    Email Article

    Thank you for your interest in spreading the word on PNAS.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Guanylyl cyclase C agonists regulate progression through the cell cycle of human colon carcinoma cells
    (Your Name) has sent you a message from PNAS
    (Your Name) thought you would like to see the PNAS web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Guanylyl cyclase C agonists regulate progression through the cell cycle of human colon carcinoma cells
    G. M. Pitari, M. D. Di Guglielmo, J. Park, S. Schulz, S. A. Waldman
    Proceedings of the National Academy of Sciences Jul 2001, 98 (14) 7846-7851; DOI: 10.1073/pnas.141124698

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Request Permissions
    Share
    Guanylyl cyclase C agonists regulate progression through the cell cycle of human colon carcinoma cells
    G. M. Pitari, M. D. Di Guglielmo, J. Park, S. Schulz, S. A. Waldman
    Proceedings of the National Academy of Sciences Jul 2001, 98 (14) 7846-7851; DOI: 10.1073/pnas.141124698
    Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Mendeley logo Mendeley
    Proceedings of the National Academy of Sciences: 98 (14)
    Table of Contents

    Submit

    Sign up for Article Alerts

    Jump to section

    • Article
      • Abstract
      • Materials and Methods
      • Results
      • Discussion
      • Acknowledgments
      • Footnotes
      • Abbreviations
      • References
    • Figures & SI
    • Info & Metrics
    • PDF

    You May Also be Interested in

    Abstract depiction of a guitar and musical note
    Science & Culture: At the nexus of music and medicine, some see disease treatments
    Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
    Image credit: Shutterstock/agsandrew.
    Large piece of gold
    News Feature: Tracing gold's cosmic origins
    Astronomers thought they’d finally figured out where gold and other heavy elements in the universe came from. In light of recent results, they’re not so sure.
    Image credit: Science Source/Tom McHugh.
    Dancers in red dresses
    Journal Club: Friends appear to share patterns of brain activity
    Researchers are still trying to understand what causes this strong correlation between neural and social networks.
    Image credit: Shutterstock/Yeongsik Im.
    White and blue bird
    Hazards of ozone pollution to birds
    Amanda Rodewald, Ivan Rudik, and Catherine Kling talk about the hazards of ozone pollution to birds.
    Listen
    Past PodcastsSubscribe
    Goats standing in a pin
    Transplantation of sperm-producing stem cells
    CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
    Image credit: Jon M. Oatley.

    Similar Articles

    Site Logo
    Powered by HighWire
    • Submit Manuscript
    • Twitter
    • Facebook
    • RSS Feeds
    • Email Alerts

    Articles

    • Current Issue
    • Special Feature Articles – Most Recent
    • List of Issues

    PNAS Portals

    • Anthropology
    • Chemistry
    • Classics
    • Front Matter
    • Physics
    • Sustainability Science
    • Teaching Resources

    Information

    • Authors
    • Editorial Board
    • Reviewers
    • Librarians
    • Press
    • Site Map
    • PNAS Updates

    Feedback    Privacy/Legal

    Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490