Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Polycomb repression of flowering during early plant development

Tetsu Kinoshita, John J. Harada, Robert B. Goldberg, and Robert L. Fischer
PNAS November 20, 2001 98 (24) 14156-14161; https://doi.org/10.1073/pnas.241507798
Tetsu Kinoshita
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John J. Harada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert B. Goldberg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert L. Fischer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Contributed by Robert B. Goldberg

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

All plants flower late in their life cycle. For example, in Arabidopsis, the shoot undergoes a transition and produces reproductive flowers after the adult phase of vegetative growth. Much is known about genetic and environmental processes that control flowering time in mature plants. However, little is understood about the mechanisms that prevent plants from flowering much earlier during embryo and seedling development. Arabidopsis embryonic flower (emf1 and emf2) mutants flower soon after germination, suggesting that a floral repression mechanism is established in wild-type plants that prevents flowering until maturity. Here, we show that polycomb group proteins play a central role in repressing flowering early in the plant life cycle. We found that mutations in the Fertilization Independent Endosperm (FIE) polycomb gene caused the seedling shoot to produce flower-like structures and organs. Flower-like structures were also generated from the hypocotyl and root, organs not associated with reproduction. Expression of floral induction and homeotic genes was derepressed in mutant embryos and seedlings. These results suggest that FIE-mediated polycomb complexes are an essential component of a floral repression mechanism established early during plant development.

Footnotes

    • ↵† Present address: National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411, Japan.

    • ↵¶ To whom reprint requests should be addressed. E-mail: rfischer{at}uclink4.berkeley.edu.

  • Abbreviations

    FIE,
    Fertilization Independent Endosperm;
    GFP,
    Green Fluorescent Protein;
    pFIE∷FIE-GFP,
    FIE promoter ligated to FIE and GFP cDNA sequences;
    pCaMV∷FIE-GFP,
    cauliflower mosaic virus promoter ligated to FIE and GFP cDNA sequences;
    GUS,
    β-glucuronidase;
    LFY∷GUS,
    LFY promoter ligated to GUS cDNA;
    AG∷GUS,
    AG promoter ligated to GUS cDNA;
    AP3∷GUS,
    AP3 promoter ligated to GUS cDNA;
    EMF,
    Embryonic Flower
    • Accepted September 25, 2001.
    • Copyright © 2001, The National Academy of Sciences
    View Full Text
    PreviousNext
    Back to top
    Article Alerts
    Email Article

    Thank you for your interest in spreading the word on PNAS.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Polycomb repression of flowering during early plant development
    (Your Name) has sent you a message from PNAS
    (Your Name) thought you would like to see the PNAS web site.
    Citation Tools
    Polycomb repression of flowering during early plant development
    Tetsu Kinoshita, John J. Harada, Robert B. Goldberg, Robert L. Fischer
    Proceedings of the National Academy of Sciences Nov 2001, 98 (24) 14156-14161; DOI: 10.1073/pnas.241507798

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Request Permissions
    Share
    Polycomb repression of flowering during early plant development
    Tetsu Kinoshita, John J. Harada, Robert B. Goldberg, Robert L. Fischer
    Proceedings of the National Academy of Sciences Nov 2001, 98 (24) 14156-14161; DOI: 10.1073/pnas.241507798
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Mendeley logo Mendeley
    Proceedings of the National Academy of Sciences: 116 (49)
    Current Issue

    Submit

    Sign up for Article Alerts

    Jump to section

    • Article
      • Abstract
      • Materials and Methods
      • Results
      • Discussion
      • Acknowledgments
      • Footnotes
      • Abbreviations
      • References
    • Figures & SI
    • Info & Metrics
    • PDF

    You May Also be Interested in

    Modulating the body's networks could become mainstream therapy for many health issues. Image credit: The Feinstein Institutes for Medicine Research.
    Core Concept: The rise of bioelectric medicine sparks interest among researchers, patients, and industry
    Modulating the body's networks could become mainstream therapy for many health issues.
    Image credit: The Feinstein Institutes for Medicine Research.
    Adaptations in heart structure and function likely enabled endurance and survival in preindustrial humans. Image courtesy of Pixabay/Skeeze.
    Human heart evolved for endurance
    Adaptations in heart structure and function likely enabled endurance and survival in preindustrial humans.
    Image courtesy of Pixabay/Skeeze.
    Viscoelastic carrier fluids enhance retention of fire retardants on wildfire-prone vegetation. Image courtesy of Jesse D. Acosta.
    Viscoelastic fluids and wildfire prevention
    Viscoelastic carrier fluids enhance retention of fire retardants on wildfire-prone vegetation.
    Image courtesy of Jesse D. Acosta.
    Water requirements may make desert bird declines more likely in a warming climate. Image courtesy of Sean Peterson (photographer).
    Climate change and desert bird collapse
    Water requirements may make desert bird declines more likely in a warming climate.
    Image courtesy of Sean Peterson (photographer).
    QnAs with NAS member and plant biologist Sheng Yang He. Image courtesy of Sheng Yang He.
    Featured QnAs
    QnAs with NAS member and plant biologist Sheng Yang He
    Image courtesy of Sheng Yang He.

    Similar Articles

    Site Logo
    Powered by HighWire
    • Submit Manuscript
    • Twitter
    • Facebook
    • RSS Feeds
    • Email Alerts

    Articles

    • Current Issue
    • Latest Articles
    • Archive

    PNAS Portals

    • Classics
    • Front Matter
    • Teaching Resources
    • Anthropology
    • Chemistry
    • Physics
    • Sustainability Science

    Information

    • Authors
    • Editorial Board
    • Reviewers
    • Press
    • Site Map
    • PNAS Updates

    Feedback    Privacy/Legal

    Copyright © 2019 National Academy of Sciences. Online ISSN 1091-6490