Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Commentary

Documenting plant domestication: The consilience of biological and archaeological approaches

Bruce D. Smith
PNAS February 13, 2001 98 (4) 1324-1326; https://doi.org/10.1073/pnas.98.4.1324
Bruce D. Smith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Related Articles

  • Archaeological evidence of teosinte domestication from Guilá Naquitz, Oaxaca
    - Feb 13, 2001
  • The earliest archaeological maize (Zea mays L.) from highland Mexico: New accelerator mass spectrometry dates and their implications
    - Feb 13, 2001
  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

For more than a million years our distant ancestors were hunter–gatherers, relying exclusively on the gathering of wild plants and the hunting of wild animals for their food. Then, between 10,000 and 5,000 years ago, dramatic changes took place in this longstanding way of life, as human societies in more than a half dozen regions of the world, including Mexico, independently domesticated a variety of different plants and animals (1, 2). These early domesticates, and the agricultural economies subsequently based on them, marked a major turning point in the history of the earth and our species, in that they formed the lever with which humans have relentlessly transformed the earth and its terrestrial ecosystems. Not surprisingly, this “Neolithic Revolution” has attracted increasing attention from both biologists and archaeologists in the more than five decades that have passed since the pioneering field research on agricultural origins by Vavilov, Braidwood, and MacNeish (1). No longer open to easy and universal explanation as a rapid and straightforward transition between adaptational steady states, the developmental shift from hunting and gathering to agriculture has in the past several decades blossomed out into a set of long-unfolding and fascinatingly complex, regional scale developmental puzzles. The most dramatic recent advances in understanding these diverse and extended regional transformations center on documenting the domestication of individual species and involve a consilience and cross-illumination of biological and archaeological approaches. In this issue of PNAS, two articles provide a welcome new addition in this area of research, while also underscoring how much is still to be learned about the initial domestication of maize, and more generally, about agricultural origins in Mexico. Piperno and Flannery (3) report on the oldest maize (Zea mays ssp. mays) cobs yet recovered from Mexico, describing their archaeological context and reporting direct accelerator mass spectrometer …

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Documenting plant domestication: The consilience of biological and archaeological approaches
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Documenting plant domestication: The consilience of biological and archaeological approaches
Bruce D. Smith
Proceedings of the National Academy of Sciences Feb 2001, 98 (4) 1324-1326; DOI: 10.1073/pnas.98.4.1324

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Documenting plant domestication: The consilience of biological and archaeological approaches
Bruce D. Smith
Proceedings of the National Academy of Sciences Feb 2001, 98 (4) 1324-1326; DOI: 10.1073/pnas.98.4.1324
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 98 (4)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Scientist looking at an electronic tablet
Opinion: Standardizing gene product nomenclature—a call to action
Biomedical communities and journals need to standardize nomenclature of gene products to enhance accuracy in scientific and public communication.
Image credit: Shutterstock/greenbutterfly.
One red and one yellow modeled protein structures
Journal Club: Study reveals evolutionary origins of fold-switching protein
Shapeshifting designs could have wide-ranging pharmaceutical and biomedical applications in coming years.
Image credit: Acacia Dishman/Medical College of Wisconsin.
White and blue bird
Hazards of ozone pollution to birds
Amanda Rodewald, Ivan Rudik, and Catherine Kling talk about the hazards of ozone pollution to birds.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490