Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Amplification–mutagenesis: Evidence that “directed” adaptive mutation and general hypermutability result from growth with a selected gene amplification

Heather Hendrickson, E. Susan Slechta, Ulfar Bergthorsson, Dan I. Andersson, and John R. Roth
PNAS February 19, 2002 99 (4) 2164-2169; https://doi.org/10.1073/pnas.032680899
Heather Hendrickson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Susan Slechta
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ulfar Bergthorsson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dan I. Andersson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John R. Roth
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Communicated by Nancy Kleckner, Harvard University, Cambridge, MA (received for review September 9, 2001)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

When a particular lac mutant of Escherichia coli starves in the presence of lactose, nongrowing cells appear to direct mutations preferentially to sites that allow growth (adaptive mutation). This observation suggested that growth limitation stimulates mutability. Evidence is provided here that this behavior is actually caused by a standard Darwinian process in which natural selection acts in three sequential steps. First, growth limitation favors growth of a subpopulation with an amplification of the mutant lac gene; next, it favors cells with a lac+ revertant allele within the amplified array. Finally, it favors loss of mutant copies until a stable haploid lac+ revertant arises and overgrows the colony. By increasing the lac copy number, selection enhances the likelihood of reversion within each developing clone. This sequence of events appears to direct mutations to useful sites. General mutagenesis is a side-effect of growth with an amplification (SOS induction). The F′ plasmid, which carries lac, contributes by stimulating gene duplication and amplification. Selective stress has no direct effect on mutation rate or target specificity, but acts to favor a succession of cell types with progressively improved growth on lactose. The sequence of events—amplification, mutation, segregation—may help to explain both the origins of some cancers and the evolution of new genes under selection.

Footnotes

    • ↵† Present address: Department of Biology, University of Pittsburgh, Pittsburgh, PA 15260.

    • ↵§ To whom reprint requests should be addressed. E-mail roth{at}bioscience.utah.edu.

  • Abbreviations

    Tc,
    tetracycline;
    CTc,
    chlortetracycline;
    TetA,
    tetracycline-inducible exporter
    • Received September 9, 2001.
    • Accepted December 18, 2001.
    • Copyright © 2002, The National Academy of Sciences
    View Full Text
    PreviousNext
    Back to top
    Article Alerts
    Email Article

    Thank you for your interest in spreading the word on PNAS.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Amplification–mutagenesis: Evidence that “directed” adaptive mutation and general hypermutability result from growth with a selected gene amplification
    (Your Name) has sent you a message from PNAS
    (Your Name) thought you would like to see the PNAS web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Amplification–mutagenesis: Evidence that “directed” adaptive mutation and general hypermutability result from growth with a selected gene amplification
    Heather Hendrickson, E. Susan Slechta, Ulfar Bergthorsson, Dan I. Andersson, John R. Roth
    Proceedings of the National Academy of Sciences Feb 2002, 99 (4) 2164-2169; DOI: 10.1073/pnas.032680899

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Request Permissions
    Share
    Amplification–mutagenesis: Evidence that “directed” adaptive mutation and general hypermutability result from growth with a selected gene amplification
    Heather Hendrickson, E. Susan Slechta, Ulfar Bergthorsson, Dan I. Andersson, John R. Roth
    Proceedings of the National Academy of Sciences Feb 2002, 99 (4) 2164-2169; DOI: 10.1073/pnas.032680899
    Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Mendeley logo Mendeley
    Proceedings of the National Academy of Sciences: 99 (4)
    Table of Contents

    Submit

    Sign up for Article Alerts

    Jump to section

    • Article
      • Abstract
      • Materials and Methods
      • Results and Discussion
      • Acknowledgments
      • Footnotes
      • Abbreviations
      • References
    • Figures & SI
    • Info & Metrics
    • PDF

    You May Also be Interested in

    Abstract depiction of a guitar and musical note
    Science & Culture: At the nexus of music and medicine, some see disease treatments
    Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
    Image credit: Shutterstock/agsandrew.
    Large piece of gold
    News Feature: Tracing gold's cosmic origins
    Astronomers thought they’d finally figured out where gold and other heavy elements in the universe came from. In light of recent results, they’re not so sure.
    Image credit: Science Source/Tom McHugh.
    Dancers in red dresses
    Journal Club: Friends appear to share patterns of brain activity
    Researchers are still trying to understand what causes this strong correlation between neural and social networks.
    Image credit: Shutterstock/Yeongsik Im.
    White and blue bird
    Hazards of ozone pollution to birds
    Amanda Rodewald, Ivan Rudik, and Catherine Kling talk about the hazards of ozone pollution to birds.
    Listen
    Past PodcastsSubscribe
    Goats standing in a pin
    Transplantation of sperm-producing stem cells
    CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
    Image credit: Jon M. Oatley.

    Similar Articles

    Site Logo
    Powered by HighWire
    • Submit Manuscript
    • Twitter
    • Facebook
    • RSS Feeds
    • Email Alerts

    Articles

    • Current Issue
    • Special Feature Articles – Most Recent
    • List of Issues

    PNAS Portals

    • Anthropology
    • Chemistry
    • Classics
    • Front Matter
    • Physics
    • Sustainability Science
    • Teaching Resources

    Information

    • Authors
    • Editorial Board
    • Reviewers
    • Librarians
    • Press
    • Site Map
    • PNAS Updates

    Feedback    Privacy/Legal

    Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490