Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Sustainable water deliveries from the Colorado River in a changing climate

Tim P. Barnett and David W. Pierce
  1. Division of Climate, Atmospheric Science, and Physical Oceanography, Scripps Institution of Oceanography, La Jolla, CA 92093-0224

See allHide authors and affiliations

PNAS first published April 20, 2009; https://doi.org/10.1073/pnas.0812762106
Tim P. Barnett
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: timdotbarnett@ucsd.edu
David W. Pierce
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Peter Gleick, Pacific Institute for Studies in Development, Environment, and Security, Oakland, CA, and approved March 6, 2009 (received for review December 15, 2008)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

The Colorado River supplies water to 27 million users in 7 states and 2 countries and irrigates over 3 million acres of farmland. Global climate models almost unanimously project that human-induced climate change will reduce runoff in this region by 10–30%. This work explores whether currently scheduled future water deliveries from the Colorado River system are sustainable under different climate-change scenarios. If climate change reduces runoff by 10%, scheduled deliveries will be missed ≈58% of the time by 2050. If runoff reduces 20%, they will be missed ≈88% of the time. The mean shortfall when full deliveries cannot be met increases from ≈0.5–0.7 billion cubic meters per year (bcm/yr) in 2025 to ≈1.2–1.9 bcm/yr by 2050 out of a request of ≈17.3 bcm/yr. Such values are small enough to be manageable. The chance of a year with deliveries <14.5 bcm/yr increases to 21% by midcentury if runoff reduces 20%, but such low deliveries could be largely avoided by reducing scheduled deliveries. These results are computed by using estimates of Colorado River flow from the 20th century, which was unusually wet; if the river reverts to its long-term mean, shortfalls increase another 1–1.5 bcm/yr. With either climate-change or long-term mean flows, currently scheduled future water deliveries from the Colorado River are not sustainable. However, the ability of the system to mitigate droughts can be maintained if the various users of the river find a way to reduce average deliveries.

  • climate change
  • global warming
  • hydrology
  • sustainability
  • water resources

Footnotes

  • 1To whom correspondence should be addressed at: Division of Climate, Atmospheric Science, and Physical Oceanography, Mail Stop 0224, Scripps Institution of Oceanography, La Jolla, CA 92093-0224. E-mail: timdotbarnett{at}ucsd.edu
  • Author contributions: T.P.B. and D.W.P. designed research, performed research, analyzed data, and wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

Next
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Sustainable water deliveries from the Colorado River in a changing climate
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Sustainable water deliveries from the Colorado River in a changing climate
Tim P. Barnett, David W. Pierce
Proceedings of the National Academy of Sciences Apr 2009, pnas.0812762106; DOI: 10.1073/pnas.0812762106

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Sustainable water deliveries from the Colorado River in a changing climate
Tim P. Barnett, David W. Pierce
Proceedings of the National Academy of Sciences Apr 2009, pnas.0812762106; DOI: 10.1073/pnas.0812762106
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 118 (9)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Model of the Amazon forest
News Feature: A sea in the Amazon
Did the Caribbean sweep into the western Amazon millions of years ago, shaping the region’s rich biodiversity?
Image credit: Tacio Cordeiro Bicudo (University of São Paulo, São Paulo, Brazil), Victor Sacek (University of São Paulo, São Paulo, Brazil), and Lucy Reading-Ikkanda (artist).
Syrian archaeological site
Journal Club: In Mesopotamia, early cities may have faltered before climate-driven collapse
Settlements 4,200 years ago may have suffered from overpopulation before drought and lower temperatures ultimately made them unsustainable.
Image credit: Andrea Ricci.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Birds nestling on tree branches
Parent–offspring conflict in songbird fledging
Some songbird parents might improve their own fitness by manipulating their offspring into leaving the nest early, at the cost of fledgling survival, a study finds.
Image credit: Gil Eckrich (photographer).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490