Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Inferring friendship network structure by using mobile phone data

Nathan Eagle, Alex (Sandy) Pentland, and David Lazer
  1. aSanta Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501;
  2. bMIT Media Laboratory, Massachusetts Institute of Technology, E15–383, 20 Ames Street, Cambridge, MA 02139; and
  3. cDepartments of Political Science and Computer Science, Northeastern University, Boston, MA 02115

See allHide authors and affiliations

PNAS first published August 17, 2009; https://doi.org/10.1073/pnas.0900282106
Nathan Eagle
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: nathan@mit.edu
Alex (Sandy) Pentland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Lazer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

Data collected from mobile phones have the potential to provide insight into the relational dynamics of individuals. This paper compares observational data from mobile phones with standard self-report survey data. We find that the information from these two data sources is overlapping but distinct. For example, self-reports of physical proximity deviate from mobile phone records depending on the recency and salience of the interactions. We also demonstrate that it is possible to accurately infer 95% of friendships based on the observational data alone, where friend dyads demonstrate distinctive temporal and spatial patterns in their physical proximity and calling patterns. These behavioral patterns, in turn, allow the prediction of individual-level outcomes such as job satisfaction.

  • engineering-social systems
  • relational inference
  • social network analysis
  • reality mining
  • relational scripts

Footnotes

  • 1To whom correspondence should be addressed. E-mail: nathan{at}mit.edu
  • Author contributions: N.E., A.S.P., and D.L. designed research; N.E. and A.S.P. performed research; N.E. and D.L. contributed new reagents/analytic tools; N.E. and D.L. analyzed data; and N.E. and D.L. wrote the paper.

  • Edited by Susan Hanson, Clark University, Worcester, MA, and approved July 1, 2009

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

Next
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Inferring friendship network structure by using mobile phone data
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Inferring friendship network structure by using mobile phone data
Nathan Eagle, Alex (Sandy) Pentland, David Lazer
Proceedings of the National Academy of Sciences Aug 2009, pnas.0900282106; DOI: 10.1073/pnas.0900282106

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Inferring friendship network structure by using mobile phone data
Nathan Eagle, Alex (Sandy) Pentland, David Lazer
Proceedings of the National Academy of Sciences Aug 2009, pnas.0900282106; DOI: 10.1073/pnas.0900282106
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

Related Articles

  • In This Issue
    - Sep 08, 2009
  • What is a social tie?
    - Sep 01, 2009
Proceedings of the National Academy of Sciences: 118 (15)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Water from a faucet fills a glass.
News Feature: How “forever chemicals” might impair the immune system
Researchers are exploring whether these ubiquitous fluorinated molecules might worsen infections or hamper vaccine effectiveness.
Image credit: Shutterstock/Dmitry Naumov.
Reflection of clouds in the still waters of Mono Lake in California.
Inner Workings: Making headway with the mysteries of life’s origins
Recent experiments and simulations are starting to answer some fundamental questions about how life came to be.
Image credit: Shutterstock/Radoslaw Lecyk.
Cave in coastal Kenya with tree growing in the middle.
Journal Club: Small, sharp blades mark shift from Middle to Later Stone Age in coastal Kenya
Archaeologists have long tried to define the transition between the two time periods.
Image credit: Ceri Shipton.
Mouse fibroblast cells. Electron bifurcation reactions keep mammalian cells alive.
Exploring electron bifurcation
Jonathon Yuly, David Beratan, and Peng Zhang investigate how electron bifurcation reactions work.
Listen
Past PodcastsSubscribe
Panda bear hanging in a tree
How horse manure helps giant pandas tolerate cold
A study finds that giant pandas roll in horse manure to increase their cold tolerance.
Image credit: Fuwen Wei.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Cozzarelli Prize
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490