Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera)

Reed M. Johnson, Jay D. Evans, Gene E. Robinson, and May R. Berenbaum
  1. aDepartment of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801; and
  2. bBee Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705

See allHide authors and affiliations

PNAS first published August 24, 2009; https://doi.org/10.1073/pnas.0906970106
Reed M. Johnson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jay D. Evans
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gene E. Robinson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
May R. Berenbaum
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: maybe@illinois.edu
  1. Contributed by May R. Berenbaum, July 14, 2009 (sent for review February 18, 2009)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

Colony collapse disorder (CCD) is a mysterious disappearance of honey bees that has beset beekeepers in the United States since late 2006. Pathogens and other environmental stresses, including pesticides, have been linked to CCD, but a causal relationship has not yet been demonstrated. Because the gut acts as a primary interface between the honey bee and its environment as a site of entry for pathogens and toxins, we used whole-genome microarrays to compare gene expression between guts of bees from CCD colonies originating on both the east and west coasts of the United States and guts of bees from healthy colonies sampled before the emergence of CCD. Considerable variation in gene expression was associated with the geographical origin of bees, but a consensus list of 65 transcripts was identified as potential markers for CCD status. Overall, elevated expression of pesticide response genes was not observed. Genes involved in immune response showed no clear trend in expression pattern despite the increased prevalence of viruses and other pathogens in CCD colonies. Microarray analysis revealed unusual ribosomal RNA fragments that were conspicuously more abundant in the guts of CCD bees. The presence of these fragments may be a possible consequence of picorna-like viral infection, including deformed wing virus and Israeli acute paralysis virus, and may be related to arrested translation. Ribosomal fragment abundance and presence of multiple viruses may prove to be useful diagnostic markers for colonies afflicted with CCD.

  • microarray
  • picorna-like virus
  • ribosomal RNA

Footnotes

  • 2To whom correspondence should be addressed. E-mail: maybe{at}illinois.edu
  • Author contributions: R.M.J., J.D.E., G.E.R., and M.R.B. designed research; R.M.J. and J.D.E. performed research; J.D.E. and G.E.R. contributed new reagents/analytic tools; R.M.J., J.D.E., G.E.R., and M.R.B. analyzed data; and R.M.J., J.D.E., G.E.R., and M.R.B. wrote the paper.

  • The authors declare no conflict of interest.

Next
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera)
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera)
Reed M. Johnson, Jay D. Evans, Gene E. Robinson, May R. Berenbaum
Proceedings of the National Academy of Sciences Aug 2009, pnas.0906970106; DOI: 10.1073/pnas.0906970106

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera)
Reed M. Johnson, Jay D. Evans, Gene E. Robinson, May R. Berenbaum
Proceedings of the National Academy of Sciences Aug 2009, pnas.0906970106; DOI: 10.1073/pnas.0906970106
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

Related Article

  • In This Issue
    - Sep 01, 2009
Proceedings of the National Academy of Sciences: 118 (14)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Smoke emanates from Japan’s Fukushima nuclear power plant a few days after tsunami damage
Core Concept: Muography offers a new way to see inside a multitude of objects
Muons penetrate much further than X-rays, they do essentially zero damage, and they are provided for free by the cosmos.
Image credit: Science Source/Digital Globe.
Water from a faucet fills a glass.
News Feature: How “forever chemicals” might impair the immune system
Researchers are exploring whether these ubiquitous fluorinated molecules might worsen infections or hamper vaccine effectiveness.
Image credit: Shutterstock/Dmitry Naumov.
Venus flytrap captures a fly.
Journal Club: Venus flytrap mechanism could shed light on how plants sense touch
One protein seems to play a key role in touch sensitivity for flytraps and other meat-eating plants.
Image credit: Shutterstock/Kuttelvaserova Stuchelova.
Illustration of groups of people chatting
Exploring the length of human conversations
Adam Mastroianni and Daniel Gilbert explore why conversations almost never end when people want them to.
Listen
Past PodcastsSubscribe
Panda bear hanging in a tree
How horse manure helps giant pandas tolerate cold
A study finds that giant pandas roll in horse manure to increase their cold tolerance.
Image credit: Fuwen Wei.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Cozzarelli Prize
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490