Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Quantification of artistic style through sparse coding analysis in the drawings of Pieter Bruegel the Elder

James M. Hughes, Daniel J. Graham, and Daniel N. Rockmore
  1. Departments of aComputer Science and
  2. bMathematics, Dartmouth College, Hanover, NH 03755; and
  3. cSanta Fe Institute, Santa Fe, NM 87501

See allHide authors and affiliations

PNAS first published January 5, 2010; https://doi.org/10.1073/pnas.0910530107
James M. Hughes
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel J. Graham
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel N. Rockmore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: rockmore@cs.dartmouth.edu
  1. Edited by David Mumford, Brown University, Providence, RI, and approved November 30, 2009 (received for review September 14, 2009)

  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Recently, statistical techniques have been used to assist art historians in the analysis of works of art. We present a novel technique for the quantification of artistic style that utilizes a sparse coding model. Originally developed in vision research, sparse coding models can be trained to represent any image space by maximizing the kurtosis of a representation of an arbitrarily selected image from that space. We apply such an analysis to successfully distinguish a set of authentic drawings by Pieter Bruegel the Elder from another set of well-known Bruegel imitations. We show that our approach, which involves a direct comparison based on a single relevant statistic, offers a natural and potentially more germane alternative to wavelet-based classification techniques that rely on more complicated statistical frameworks. Specifically, we show that our model provides a method capable of discriminating between authentic and imitation Bruegel drawings that numerically outperforms well-known existing approaches. Finally, we discuss the applications and constraints of our technique.

  • art analysis
  • art authentication
  • image classification
  • machine learning
  • stylometry

Footnotes

  • 1To whom correspondence should be addressed. E-mail: rockmore{at}cs.dartmouth.edu.
  • Author contributions: J.M.H., D.J.G., and D.N.R. designed research; J.M.H. and D.J.G. performed research; J.M.H., D.J.G., and D.N.R. contributed new reagents/analytic tools; J.M.H., D.J.G., and D.N.R. analyzed data; J.M.H., D.J.G., and D.N.R. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

Next
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Quantification of artistic style through sparse coding analysis in the drawings of Pieter Bruegel the Elder
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Quantification of artistic style through sparse coding analysis in the drawings of Pieter Bruegel the Elder
James M. Hughes, Daniel J. Graham, Daniel N. Rockmore
Proceedings of the National Academy of Sciences Jan 2010, DOI: 10.1073/pnas.0910530107

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Quantification of artistic style through sparse coding analysis in the drawings of Pieter Bruegel the Elder
James M. Hughes, Daniel J. Graham, Daniel N. Rockmore
Proceedings of the National Academy of Sciences Jan 2010, DOI: 10.1073/pnas.0910530107
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 118 (15)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Info & Metrics
  • PDF

You May Also be Interested in

Smoke emanates from Japan’s Fukushima nuclear power plant a few days after tsunami damage
Core Concept: Muography offers a new way to see inside a multitude of objects
Muons penetrate much further than X-rays, they do essentially zero damage, and they are provided for free by the cosmos.
Image credit: Science Source/Digital Globe.
Water from a faucet fills a glass.
News Feature: How “forever chemicals” might impair the immune system
Researchers are exploring whether these ubiquitous fluorinated molecules might worsen infections or hamper vaccine effectiveness.
Image credit: Shutterstock/Dmitry Naumov.
Venus flytrap captures a fly.
Journal Club: Venus flytrap mechanism could shed light on how plants sense touch
One protein seems to play a key role in touch sensitivity for flytraps and other meat-eating plants.
Image credit: Shutterstock/Kuttelvaserova Stuchelova.
Illustration of groups of people chatting
Exploring the length of human conversations
Adam Mastroianni and Daniel Gilbert explore why conversations almost never end when people want them to.
Listen
Past PodcastsSubscribe
Panda bear hanging in a tree
How horse manure helps giant pandas tolerate cold
A study finds that giant pandas roll in horse manure to increase their cold tolerance.
Image credit: Fuwen Wei.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Cozzarelli Prize
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490