Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli

Mayukh K. Sarkar, Koushik Paul, and David Blair
PNAS first published May 3, 2010; https://doi.org/10.1073/pnas.1000935107
Mayukh K. Sarkar
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Koushik Paul
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Blair
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: blair@bioscience.utah.edu
  1. Edited by Howard C. Berg, Harvard University, Cambridge, MA, and approved April 12, 2010 (received for review January 26, 2010)

  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The direction of rotation of the Escherichia coli flagellum is controlled by an assembly called the switch complex formed from multiple subunits of the proteins FliG, FliM, and FliN. Structurally, the switch complex corresponds to a drum-shaped feature at the bottom of the basal body, termed the C-ring. Stimulus-regulated reversals in flagellar motor rotation are the basis for directed movement such as chemotaxis. In E. coli, the motors turn counterclockwise (CCW) in their default state, allowing the several filaments on a cell to join together in a bundle and propel the cell smoothly forward. In response to the chemotaxis signaling molecule phospho-CheY (CheYP), the motors can switch to clockwise (CW) rotation, causing dissociation of the filament bundle and reorientation of the cell. CheYP has previously been shown to bind to a conserved segment near the N terminus of FliM. Here, we show that this interaction serves to capture CheYP and that the switch to CW rotation involves the subsequent interaction of CheYP with FliN. FliN is located at the bottom of the C-ring, in close association with the C-terminal domain of FliM (FliMC), and the switch to CW rotation has been shown to involve relative movement of FliN and FliMC. Using a recently developed structural model for the FliN/FliMC array, and the CheYP-binding site here identified on FliN, we propose a mechanism by which CheYP binding could induce the conformational switch to CW rotation.

  • switching
  • cell motility
  • signal transduction
  • molecular motors

Footnotes

  • 1To whom correspondence should be addressed. E-mail: blair{at}bioscience.utah.edu.
  • Author contributions: M.S., K.P., and D.B. designed research; M.S. and K.P. performed research; M.S., K.P., and D.B. analyzed data; and M.S. and D.B. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

Next
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli
Mayukh K. Sarkar, Koushik Paul, David Blair
Proceedings of the National Academy of Sciences May 2010, 201000935; DOI: 10.1073/pnas.1000935107

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli
Mayukh K. Sarkar, Koushik Paul, David Blair
Proceedings of the National Academy of Sciences May 2010, 201000935; DOI: 10.1073/pnas.1000935107
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 118 (4)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Large piece of gold
News Feature: Tracing gold's cosmic origins
Astronomers thought they’d finally figured out where gold and other heavy elements in the universe came from. In light of recent results, they’re not so sure.
Image credit: Science Source/Tom McHugh.
Dancers in red dresses
Journal Club: Friends appear to share patterns of brain activity
Researchers are still trying to understand what causes this strong correlation between neural and social networks.
Image credit: Shutterstock/Yeongsik Im.
Yellow emoticons
Learning the language of facial expressions
Aleix Martinez explains why facial expressions often are not accurate indicators of emotion.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490