New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Adaptive specializations, social exchange, and the evolution of human intelligence

Abstract
Blank-slate theories of human intelligence propose that reasoning is carried out by general-purpose operations applied uniformly across contents. An evolutionary approach implies a radically different model of human intelligence. The task demands of different adaptive problems select for functionally specialized problem-solving strategies, unleashing massive increases in problem-solving power for ancestrally recurrent adaptive problems. Because exchange can evolve only if cooperators can detect cheaters, we hypothesized that the human mind would be equipped with a neurocognitive system specialized for reasoning about social exchange. Whereas humans perform poorly when asked to detect violations of most conditional rules, we predicted and found a dramatic spike in performance when the rule specifies an exchange and violations correspond to cheating. According to critics, people's uncanny accuracy at detecting violations of social exchange rules does not reflect a cheater detection mechanism, but extends instead to all rules regulating when actions are permitted (deontic conditionals). Here we report experimental tests that falsify these theories by demonstrating that deontic rules as a class do not elicit the search for violations. We show that the cheater detection system functions with pinpoint accuracy, searching for violations of social exchange rules only when these are likely to reveal the presence of someone who intends to cheat. It does not search for violations of social exchange rules when these are accidental, when they do not benefit the violator, or when the situation would make cheating difficult.
Footnotes
- 1To whom correspondence should be addressed. E-mail: cosmides{at}psych.ucsb.edu.
-
Author contributions: L.C., H.C.B., and J.T. designed research; L.C., H.C.B., and J.T. performed research; L.C. and H.C.B. analyzed data; and L.C., H.C.B., and J.T. wrote the paper.
-
The authors declare no conflict of interest.
-
This article is a PNAS Direct Submission.
-
This paper results from the Arthur M. Sackler Colloquium of the National Academy of Sciences, “In the Light of Evolution IV: The Human Condition,” held December 10–12, 2009, at the Arnold and Mabel Beckman Center of the National Academies of Sciences and Engineering in Irvine, CA. The complete program and audio files of most presentations are available on the NAS Web site at www.nasonline.org/SACKLER_Human_Condition.
-
This article contains supporting information online at www.pnas.org/cgi/content/full/0914623107/DCSupplemental.