Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

CYP9Q-mediated detoxification of acaricides in the honey bee (Apis mellifera)

Wenfu Mao, Mary A. Schuler, and May R. Berenbaum
PNAS first published July 20, 2011; https://doi.org/10.1073/pnas.1109535108
Wenfu Mao
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mary A. Schuler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
May R. Berenbaum
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: maybe@illinois.edu
  1. Contributed by May R. Berenbaum, June 27, 2011 (sent for review March 22, 2011)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

Although Apis mellifera, the western honey bee, has long encountered pesticides when foraging in agricultural fields, for two decades it has encountered pesticides in-hive in the form of acaricides to control Varroa destructor, a devastating parasitic mite. The pyrethroid tau-fluvalinate and the organophosphate coumaphos have been used for Varroa control, with little knowledge of honey bee detoxification mechanisms. Cytochrome P450-mediated detoxification contributes to pyrethroid tolerance in many insects, but specific P450s responsible for pesticide detoxification in honey bees (indeed, in any hymenopteran pollinator) have not been defined. We expressed and assayed CYP3 clan midgut P450s and demonstrated that CYP9Q1, CYP9Q2, and CYP9Q3 metabolize tau-fluvalinate to a form suitable for further cleavage by the carboxylesterases that also contribute to tau-fluvalinate tolerance. These in vitro assays indicated that all of the three CYP9Q enzymes also detoxify coumaphos. Molecular models demonstrate that coumaphos and tau-fluvalinate fit into the same catalytic pocket, providing a possible explanation for the synergism observed between these two compounds. Induction of CYP9Q2 and CYP9Q3 transcripts by honey extracts suggested that diet-derived phytochemicals may be natural substrates and heterologous expression of CYP9Q3 confirmed activity against quercetin, a flavonoid ubiquitous in honey. Up-regulation by honey constituents suggests that diet may influence the ability of honey bees to detoxify pesticides. Quantitative RT-PCR assays demonstrated that tau-fluvalinate enhances CYP9Q3 transcripts, whereas the pyrethroid bifenthrin enhances CYP9Q1 and CYP9Q2 transcripts and represses CYP9Q3 transcripts. The independent regulation of these P450s can be useful for monitoring and differentiating between pesticide exposures in-hive and in agricultural fields.

  • Apidae
  • miticide
  • transcriptional regulation

Footnotes

  • ↵1To whom correspondence should be addressed. E-mail: maybe{at}illinois.edu.
  • Author contributions: W.M., M.A.S., and M.R.B. designed research; W.M. performed research; M.A.S. contributed new reagents/analytic tools; W.M., M.A.S., and M.R.B. analyzed data; and W.M., M.A.S., and M.R.B. wrote the paper.

  • The authors declare no conflict of interest.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109535108/-/DCSupplemental.

Next
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
CYP9Q-mediated detoxification of acaricides in the honey bee (Apis mellifera)
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
CYP9Q-mediated detoxification of acaricides in the honey bee (Apis mellifera)
Wenfu Mao, Mary A. Schuler, May R. Berenbaum
Proceedings of the National Academy of Sciences Jul 2011, 201109535; DOI: 10.1073/pnas.1109535108

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
CYP9Q-mediated detoxification of acaricides in the honey bee (Apis mellifera)
Wenfu Mao, Mary A. Schuler, May R. Berenbaum
Proceedings of the National Academy of Sciences Jul 2011, 201109535; DOI: 10.1073/pnas.1109535108
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 118 (4)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Large piece of gold
News Feature: Tracing gold's cosmic origins
Astronomers thought they’d finally figured out where gold and other heavy elements in the universe came from. In light of recent results, they’re not so sure.
Image credit: Science Source/Tom McHugh.
Dancers in red dresses
Journal Club: Friends appear to share patterns of brain activity
Researchers are still trying to understand what causes this strong correlation between neural and social networks.
Image credit: Shutterstock/Yeongsik Im.
Yellow emoticons
Learning the language of facial expressions
Aleix Martinez explains why facial expressions often are not accurate indicators of emotion.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490