Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Age dynamics in scientific creativity

Benjamin F. Jones and Bruce A. Weinberg
  1. aDepartment of Management and Strategy, The Kellogg School of Management, Northwestern University, Evanston, IL 50208;
  2. bNational Bureau of Economic Research, Cambridge, MA 02138; and
  3. cDepartment of Economics, Ohio State University, Columbus, OH 43210

See allHide authors and affiliations

PNAS first published November 7, 2011; https://doi.org/10.1073/pnas.1102895108
Benjamin F. Jones
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bruce A. Weinberg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: weinberg.27@osu.edu bjones@kellogg.northwestern.edu
  1. Edited* by José A. Scheinkman, Princeton University, Princeton, NJ, and approved October 7, 2011 (received for review April 5, 2011)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

Data on Nobel Laureates show that the age–creativity relationship varies substantially more over time than across fields. The age dynamics within fields closely mirror field-specific shifts in (i) training patterns and (ii) the prevalence of theoretical contributions. These dynamics are especially pronounced in physics and coincide with the emergence of quantum mechanics. Taken together, these findings show fundamental shifts in the life cycle of research productivity, inform theories of the age–creativity relationship, and provide observable predictors for the age at which great achievements are made.

  • innovation
  • history of science
  • scientific revolutions

Footnotes

  • ↵1B.F.J. and B.A.W. contributed equally to this work.

  • ↵2To whom correspondence may be addressed. E-mail: weinberg.27{at}osu.edu or bjones{at}kellogg.northwestern.edu.
  • Author contributions: B.F.J. and B.A.W. designed research, performed research, analyzed data, and wrote the paper.

  • The authors declare no conflict of interest.

  • ↵*This Direct Submission article had a prearranged editor.

  • Data deposition: The data reported in this paper have been deposited in the National Bureau of Economic Research database, http://www.nber.org/data/.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1102895108/-/DCSupplemental.

Next
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Age dynamics in scientific creativity
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Age dynamics in scientific creativity
Benjamin F. Jones, Bruce A. Weinberg
Proceedings of the National Academy of Sciences Nov 2011, 201102895; DOI: 10.1073/pnas.1102895108

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Age dynamics in scientific creativity
Benjamin F. Jones, Bruce A. Weinberg
Proceedings of the National Academy of Sciences Nov 2011, 201102895; DOI: 10.1073/pnas.1102895108
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 118 (16)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Water from a faucet fills a glass.
News Feature: How “forever chemicals” might impair the immune system
Researchers are exploring whether these ubiquitous fluorinated molecules might worsen infections or hamper vaccine effectiveness.
Image credit: Shutterstock/Dmitry Naumov.
Reflection of clouds in the still waters of Mono Lake in California.
Inner Workings: Making headway with the mysteries of life’s origins
Recent experiments and simulations are starting to answer some fundamental questions about how life came to be.
Image credit: Shutterstock/Radoslaw Lecyk.
Cave in coastal Kenya with tree growing in the middle.
Journal Club: Small, sharp blades mark shift from Middle to Later Stone Age in coastal Kenya
Archaeologists have long tried to define the transition between the two time periods.
Image credit: Ceri Shipton.
Mouse fibroblast cells. Electron bifurcation reactions keep mammalian cells alive.
Exploring electron bifurcation
Jonathon Yuly, David Beratan, and Peng Zhang investigate how electron bifurcation reactions work.
Listen
Past PodcastsSubscribe
Panda bear hanging in a tree
How horse manure helps giant pandas tolerate cold
A study finds that giant pandas roll in horse manure to increase their cold tolerance.
Image credit: Fuwen Wei.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Cozzarelli Prize
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490