Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology

Engineering bone tissue from human embryonic stem cells

Darja Marolt, Iván Marcos Campos, Sarindr Bhumiratana, Ana Koren, Petros Petridis, Geping Zhang, Patrice F. Spitalnik, Warren L. Grayson, and Gordana Vunjak-Novakovic
PNAS published ahead of print May 14, 2012 https://doi.org/10.1073/pnas.1201830109
Darja Marolt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Iván Marcos Campos
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sarindr Bhumiratana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ana Koren
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Petros Petridis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Geping Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patrice F. Spitalnik
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Warren L. Grayson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gordana Vunjak-Novakovic
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Robert Langer, Massachusetts Institute of Technology, Cambridge, MA, and approved April 18, 2012 (received for review February 6, 2012)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

In extensive bone defects, tissue damage and hypoxia lead to cell death, resulting in slow and incomplete healing. Human embryonic stem cells (hESC) can give rise to all specialized lineages found in healthy bone and are therefore uniquely suited to aid regeneration of damaged bone. We show that the cultivation of hESC-derived mesenchymal progenitors on 3D osteoconductive scaffolds in bioreactors with medium perfusion leads to the formation of large and compact bone constructs. Notably, the implantation of engineered bone in immunodeficient mice for 8 wk resulted in the maintenance and maturation of bone matrix, without the formation of teratomas that is consistently observed when undifferentiated hESCs are implanted, alone or in bone scaffolds. Our study provides a proof of principle that tissue-engineering protocols can be successfully applied to hESC progenitors to grow bone grafts for use in basic and translational studies.

  • tissue regeneration
  • pluripotent stem cells

Footnotes

  • ↵1Present address: The New York Stem Cell Foundation, New York, NY 10032.

  • ↵2To whom correspondence should be addressed. E-mail: gv2131{at}columbia.edu.
  • Author contributions: D.M., I.M.C., W.L.G., and G.V.-N. designed research; D.M., I.M.C., S.B., A.K., P.P., and G.Z. performed research; D.M., I.M.C., S.B., A.K., P.P., P.F.S., W.L.G., and G.V.-N. analyzed data; and D.M., W.L.G., and G.V.-N. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1201830109/-/DCSupplemental.

Next
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Engineering bone tissue from human embryonic stem cells
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
Citation Tools
Engineering bone from human embryonic stem cells
Darja Marolt, Iván Marcos Campos, Sarindr Bhumiratana, Ana Koren, Petros Petridis, Geping Zhang, Patrice F. Spitalnik, Warren L. Grayson, Gordana Vunjak-Novakovic
Proceedings of the National Academy of Sciences May 2012, 201201830; DOI: 10.1073/pnas.1201830109

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Engineering bone from human embryonic stem cells
Darja Marolt, Iván Marcos Campos, Sarindr Bhumiratana, Ana Koren, Petros Petridis, Geping Zhang, Patrice F. Spitalnik, Warren L. Grayson, Gordana Vunjak-Novakovic
Proceedings of the National Academy of Sciences May 2012, 201201830; DOI: 10.1073/pnas.1201830109
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 116 (8)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Several aspects of the proposal, which aims to expand open access, require serious discussion and, in some cases, a rethink.
Opinion: “Plan S” falls short for society publishers—and for the researchers they serve
Several aspects of the proposal, which aims to expand open access, require serious discussion and, in some cases, a rethink.
Image credit: Dave Cutler (artist).
Several large or long-lived animals seem strangely resistant to developing cancer. Elucidating the reasons why could lead to promising cancer-fighting strategies in humans.
Core Concept: Solving Peto’s Paradox to better understand cancer
Several large or long-lived animals seem strangely resistant to developing cancer. Elucidating the reasons why could lead to promising cancer-fighting strategies in humans.
Image credit: Shutterstock.com/ronnybas frimages.
Featured Profile
PNAS Profile of NAS member and biochemist Hao Wu
 Nonmonogamous strawberry poison frog (Oophaga pumilio).  Image courtesy of Yusan Yang (University of Pittsburgh, Pittsburgh).
Putative signature of monogamy
A study suggests a putative gene-expression hallmark common to monogamous male vertebrates of some species, namely cichlid fishes, dendrobatid frogs, passeroid songbirds, common voles, and deer mice, and identifies 24 candidate genes potentially associated with monogamy.
Image courtesy of Yusan Yang (University of Pittsburgh, Pittsburgh).
Active lifestyles. Image courtesy of Pixabay/MabelAmber.
Meaningful life tied to healthy aging
Physical and social well-being in old age are linked to self-assessments of life worth, and a spectrum of behavioral, economic, health, and social variables may influence whether aging individuals believe they are leading meaningful lives.
Image courtesy of Pixabay/MabelAmber.

More Articles of This Classification

Biological Sciences

  • DNA helicase RecQ1 regulates mutually exclusive expression of virulence genes in Plasmodium falciparum via heterochromatin alteration
  • Calcineurin dephosphorylates Kelch-like 3, reversing phosphorylation by angiotensin II and regulating renal electrolyte handling
  • Impacts of the Northwest Forest Plan on forest composition and bird populations
Show more

Medical Sciences

  • Calcineurin dephosphorylates Kelch-like 3, reversing phosphorylation by angiotensin II and regulating renal electrolyte handling
  • Dual AAV-mediated gene therapy restores hearing in a DFNB9 mouse model
  • WNK4 kinase is a physiological intracellular chloride sensor
Show more

Related Content

  • No related articles found.
  • Scopus
  • PubMed
  • Google Scholar

Cited by...

  • Small molecule-driven direct conversion of human pluripotent stem cells into functional osteoblasts
  • Tissue-engineered autologous grafts for facial bone reconstruction
  • Engineering bone tissue substitutes from human induced pluripotent stem cells
  • Assembly of complex cell microenvironments using geometrically docked hydrogel shapes
  • In vivo directed differentiation of pluripotent stem cells for skeletal regeneration
  • Scopus (96)
  • Google Scholar

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Classics
  • Front Matter
  • Teaching Resources
  • Anthropology
  • Chemistry
  • Physics
  • Sustainability Science

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Press
  • Site Map

Feedback    Privacy/Legal

Copyright © 2019 National Academy of Sciences. Online ISSN 1091-6490