Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Hydrogen-limited growth of hyperthermophilic methanogens at deep-sea hydrothermal vents

Helene C. Ver Eecke, David A. Butterfield, Julie A. Huber, Marvin D. Lilley, Eric J. Olson, Kevin K. Roe, Leigh J. Evans, Alexandr Y. Merkel, Holly V. Cantin, and James F. Holden
PNAS first published August 6, 2012; https://doi.org/10.1073/pnas.1206632109
Helene C. Ver Eecke
aDepartment of Microbiology, University of Massachusetts, Amherst, MA 01003;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David A. Butterfield
bJoint Institute for the Study of the Atmosphere and Ocean and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julie A. Huber
cJosephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA 02543;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marvin D. Lilley
dSchool of Oceanography, University of Washington, Seattle, WA 98195;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eric J. Olson
dSchool of Oceanography, University of Washington, Seattle, WA 98195;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kevin K. Roe
bJoint Institute for the Study of the Atmosphere and Ocean and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Leigh J. Evans
eCooperative Institute for Marine Resources Studies, Oregon State University, Newport, OR 97365; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexandr Y. Merkel
fWinogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow 117312, Russia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Holly V. Cantin
cJosephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA 02543;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James F. Holden
aDepartment of Microbiology, University of Massachusetts, Amherst, MA 01003;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jholden@microbio.umass.edu
  1. Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved June 29, 2012 (received for review April 21, 2012)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

Microbial productivity at hydrothermal vents is among the highest found anywhere in the deep ocean, but constraints on microbial growth and metabolism at vents are lacking. We used a combination of cultivation, molecular, and geochemical tools to verify pure culture H2 threshold measurements for hyperthermophilic methanogenesis in low-temperature hydrothermal fluids from Axial Volcano and Endeavour Segment in the northeastern Pacific Ocean. Two Methanocaldococcus strains from Axial and Methanocaldococcus jannaschii showed similar Monod growth kinetics when grown in a bioreactor at varying H2 concentrations. Their H2 half-saturation value was 66 μM, and growth ceased below 17–23 μM H2, 10-fold lower than previously predicted. By comparison, measured H2 and CH4 concentrations in fluids suggest that there was generally sufficient H2 for Methanocaldococcus growth at Axial but not at Endeavour. Fluids from one vent at Axial (Marker 113) had anomalously high CH4 concentrations and contained various thermal classes of methanogens based on cultivation and mcrA/mrtA analyses. At Endeavour, methanogens were largely undetectable in fluid samples based on cultivation and molecular screens, although abundances of hyperthermophilic heterotrophs were relatively high. Where present, Methanocaldococcus genes were the predominant mcrA/mrtA sequences recovered and comprised ∼0.2–6% of the total archaeal community. Field and coculture data suggest that H2 limitation may be partly ameliorated by H2 syntrophy with hyperthermophilic heterotrophs. These data support our estimated H2 threshold for hyperthermophilic methanogenesis at vents and highlight the need for coupled laboratory and field measurements to constrain microbial distribution and biogeochemical impacts in the deep sea.

Footnotes

  • ↵1To whom correspondence should be addressed. E-mail: jholden{at}microbio.umass.edu.
  • Author contributions: H.C.V., D.A.B., J.A.H., and J.F.H. designed research; H.C.V., D.A.B., J.A.H., E.J.O., K.K.R., L.J.E., A.Y.M., H.V.C., and J.F.H. performed research; H.C.V., D.A.B., J.A.H., M.D.L., and J.F.H. analyzed data; and H.C.V., D.A.B., J.A.H., and J.F.H. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

  • Data deposition: The sequences reported in this paper have been deposited in the GenBank database (accession nos. HQ635140–HQ635763).

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1206632109/-/DCSupplemental.

Freely available online through the PNAS open access option.

Next
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Hydrogen-limited growth of hyperthermophilic methanogens at deep-sea hydrothermal vents
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Hydrogen-limited growth of methanogens at vents
Helene C. Ver Eecke, David A. Butterfield, Julie A. Huber, Marvin D. Lilley, Eric J. Olson, Kevin K. Roe, Leigh J. Evans, Alexandr Y. Merkel, Holly V. Cantin, James F. Holden
Proceedings of the National Academy of Sciences Aug 2012, 201206632; DOI: 10.1073/pnas.1206632109

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Hydrogen-limited growth of methanogens at vents
Helene C. Ver Eecke, David A. Butterfield, Julie A. Huber, Marvin D. Lilley, Eric J. Olson, Kevin K. Roe, Leigh J. Evans, Alexandr Y. Merkel, Holly V. Cantin, James F. Holden
Proceedings of the National Academy of Sciences Aug 2012, 201206632; DOI: 10.1073/pnas.1206632109
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 118 (3)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Scientist looking at an electronic tablet
Opinion: Standardizing gene product nomenclature—a call to action
Biomedical communities and journals need to standardize nomenclature of gene products to enhance accuracy in scientific and public communication.
Image credit: Shutterstock/greenbutterfly.
One red and one yellow modeled protein structures
Journal Club: Study reveals evolutionary origins of fold-switching protein
Shapeshifting designs could have wide-ranging pharmaceutical and biomedical applications in coming years.
Image credit: Acacia Dishman/Medical College of Wisconsin.
White and blue bird
Hazards of ozone pollution to birds
Amanda Rodewald, Ivan Rudik, and Catherine Kling talk about the hazards of ozone pollution to birds.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490