Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Global patterns of terrestrial vertebrate diversity and conservation

Clinton N. Jenkins, Stuart L. Pimm, and Lucas N. Joppa
  1. aDepartment of Biology, North Carolina State University, Raleigh, NC 27606;
  2. bNicholas School of the Environment, Duke University, Durham, NC 27708; and
  3. cMicrosoft Research, Cambridge CB1 2FB, United Kingdom

See allHide authors and affiliations

PNAS first published June 26, 2013; https://doi.org/10.1073/pnas.1302251110
Clinton N. Jenkins
aDepartment of Biology, North Carolina State University, Raleigh, NC 27606;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: clinton.jenkins@gmail.com
Stuart L. Pimm
bNicholas School of the Environment, Duke University, Durham, NC 27708; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lucas N. Joppa
cMicrosoft Research, Cambridge CB1 2FB, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Peter H. Raven, Missouri Botanical Garden, St. Louis, MO, and approved May 28, 2013 (received for review February 4, 2013)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Identifying priority areas for biodiversity is essential for directing conservation resources. We mapped global priority areas using the latest data on mammals, amphibians, and birds at a scale 100 times finer than previous assessments. Priority areas have a higher—but still insufficient—rate of protection than the global average. We identify several important areas currently ignored by biodiversity hotspots, the current leading priority map. As the window of opportunity for expanding the global protected area network begins to close, identifying priorities at a scale practical for local action ensures our findings will help protect biodiversity most effectively.

Abstract

Identifying priority areas for biodiversity is essential for directing conservation resources. Fundamentally, we must know where individual species live, which ones are vulnerable, where human actions threaten them, and their levels of protection. As conservation knowledge and threats change, we must reevaluate priorities. We mapped priority areas for vertebrates using newly updated data on >21,000 species of mammals, amphibians, and birds. For each taxon, we identified centers of richness for all species, small-ranged species, and threatened species listed with the International Union for the Conservation of Nature. Importantly, all analyses were at a spatial grain of 10 × 10 km, 100 times finer than previous assessments. This fine scale is a significant methodological improvement, because it brings mapping to scales comparable with regional decisions on where to place protected areas. We also mapped recent species discoveries, because they suggest where as-yet-unknown species might be living. To assess the protection of the priority areas, we calculated the percentage of priority areas within protected areas using the latest data from the World Database of Protected Areas, providing a snapshot of how well the planet’s protected area system encompasses vertebrate biodiversity. Although the priority areas do have more protection than the global average, the level of protection still is insufficient given the importance of these areas for preventing vertebrate extinctions. We also found substantial differences between our identified vertebrate priorities and the leading map of global conservation priorities, the biodiversity hotspots. Our findings suggest a need to reassess the global allocation of conservation resources to reflect today’s improved knowledge of biodiversity and conservation.

  • endemism
  • species distributions
  • conservation planning
  • biogeography

Footnotes

  • ↵1To whom correspondence should be addressed. E-mail: clinton.jenkins{at}gmail.com.
  • Author contributions: C.N.J., S.L.P., and L.N.J. designed research; C.N.J. performed research; C.N.J. analyzed data; and C.N.J., S.L.P., and L.N.J. wrote the paper.

  • The authors declare no conflict of interest.

  • Data deposition: GIS files of the data described in this paper are available on the Conservation Science Around the World Website, http://www4.ncsu.edu/~cnjenki2/Projects.html.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1302251110/-/DCSupplemental.

Next
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Global patterns of terrestrial vertebrate diversity and conservation
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Global vertebrate diversity and conservation
Clinton N. Jenkins, Stuart L. Pimm, Lucas N. Joppa
Proceedings of the National Academy of Sciences Jun 2013, 201302251; DOI: 10.1073/pnas.1302251110

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Global vertebrate diversity and conservation
Clinton N. Jenkins, Stuart L. Pimm, Lucas N. Joppa
Proceedings of the National Academy of Sciences Jun 2013, 201302251; DOI: 10.1073/pnas.1302251110
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 118 (9)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Model of the Amazon forest
News Feature: A sea in the Amazon
Did the Caribbean sweep into the western Amazon millions of years ago, shaping the region’s rich biodiversity?
Image credit: Tacio Cordeiro Bicudo (University of São Paulo, São Paulo, Brazil), Victor Sacek (University of São Paulo, São Paulo, Brazil), and Lucy Reading-Ikkanda (artist).
Syrian archaeological site
Journal Club: In Mesopotamia, early cities may have faltered before climate-driven collapse
Settlements 4,200 years ago may have suffered from overpopulation before drought and lower temperatures ultimately made them unsustainable.
Image credit: Andrea Ricci.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Birds nestling on tree branches
Parent–offspring conflict in songbird fledging
Some songbird parents might improve their own fitness by manipulating their offspring into leaving the nest early, at the cost of fledgling survival, a study finds.
Image credit: Gil Eckrich (photographer).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490