Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Amphitheater-headed canyons formed by megaflooding at Malad Gorge, Idaho

Michael P. Lamb, Benjamin H. Mackey, and Kenneth A. Farley
  1. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125

See allHide authors and affiliations

PNAS first published December 16, 2013; https://doi.org/10.1073/pnas.1312251111
Michael P. Lamb
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: mpl@gps.caltech.edu
Benjamin H. Mackey
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kenneth A. Farley
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Thure E. Cerling, University of Utah, Salt Lake City, UT, and approved November 25, 2013 (received for review June 27, 2013)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

The shapes of bedrock canyons offer clues to the history of surface water on Earth and Mars. Using field examples in Idaho, we found that canyons with amphitheater-shaped heads were likely carved rapidly by outburst flooding about 46,000 y ago and that canyons with more pointed heads evolved progressively by river erosion over tens of thousands of years. Our study suggests that the many amphitheater-headed canyons in fractured basalt on Mars, long inferred to be carved by groundwater seepage, may owe their origins instead to megafloods.

Abstract

Many bedrock canyons on Earth and Mars were eroded by upstream propagating headwalls, and a prominent goal in geomorphology and planetary science is to determine formation processes from canyon morphology. A diagnostic link between process and form remains highly controversial, however, and field investigations that isolate controls on canyon morphology are needed. Here we investigate the origin of Malad Gorge, Idaho, a canyon system cut into basalt with three remarkably distinct heads: two with amphitheater headwalls and the third housing the active Wood River and ending in a 7% grade knickzone. Scoured rims of the headwalls, relict plunge pools, sediment-transport constraints, and cosmogenic (3He) exposure ages indicate formation of the amphitheater-headed canyons by large-scale flooding ∼46 ka, coeval with formation of Box Canyon 18 km to the south as well as the eruption of McKinney Butte Basalt, suggesting widespread canyon formation following lava-flow diversion of the paleo-Wood River. Exposure ages within the knickzone-headed canyon indicate progressive upstream younging of strath terraces and a knickzone propagation rate of 2.5 cm/y over at least the past 33 ka. Results point to a potential diagnostic link between vertical amphitheater headwalls in basalt and rapid erosion during megaflooding due to the onset of block toppling, rather than previous interpretations of seepage erosion, with implications for quantifying the early hydrosphere of Mars.

  • megaflood
  • knickpoint
  • sapping
  • waterfall

Footnotes

  • ↵1To whom correspondence should be addressed. E-mail: mpl{at}gps.caltech.edu.
  • ↵2Present address: Department of Geological Sciences, University of Canterbury, Christchurch, New Zealand.

  • Author contributions: M.P.L. and B.H.M. designed research; M.P.L. and B.H.M. performed research; K.A.F. contributed new reagents/analytic tools; M.P.L., B.H.M., and K.A.F. analyzed data; and M.P.L., B.H.M., and K.A.F. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1312251111/-/DCSupplemental.

Next
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Amphitheater-headed canyons formed by megaflooding at Malad Gorge, Idaho
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Amphitheater-headed canyons formed by megaflooding
Michael P. Lamb, Benjamin H. Mackey, Kenneth A. Farley
Proceedings of the National Academy of Sciences Dec 2013, 201312251; DOI: 10.1073/pnas.1312251111

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Amphitheater-headed canyons formed by megaflooding
Michael P. Lamb, Benjamin H. Mackey, Kenneth A. Farley
Proceedings of the National Academy of Sciences Dec 2013, 201312251; DOI: 10.1073/pnas.1312251111
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 118 (15)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Water from a faucet fills a glass.
News Feature: How “forever chemicals” might impair the immune system
Researchers are exploring whether these ubiquitous fluorinated molecules might worsen infections or hamper vaccine effectiveness.
Image credit: Shutterstock/Dmitry Naumov.
Reflection of clouds in the still waters of Mono Lake in California.
Inner Workings: Making headway with the mysteries of life’s origins
Recent experiments and simulations are starting to answer some fundamental questions about how life came to be.
Image credit: Shutterstock/Radoslaw Lecyk.
Cave in coastal Kenya with tree growing in the middle.
Journal Club: Small, sharp blades mark shift from Middle to Later Stone Age in coastal Kenya
Archaeologists have long tried to define the transition between the two time periods.
Image credit: Ceri Shipton.
Illustration of groups of people chatting
Exploring the length of human conversations
Adam Mastroianni and Daniel Gilbert explore why conversations almost never end when people want them to.
Listen
Past PodcastsSubscribe
Panda bear hanging in a tree
How horse manure helps giant pandas tolerate cold
A study finds that giant pandas roll in horse manure to increase their cold tolerance.
Image credit: Fuwen Wei.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Cozzarelli Prize
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490