Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

High-strength cellular ceramic composites with 3D microarchitecture

Jens Bauer, Stefan Hengsbach, Iwiza Tesari, Ruth Schwaiger, and Oliver Kraft
  1. aInstitute for Applied Materials and
  2. bKarlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany

See allHide authors and affiliations

PNAS first published February 3, 2014; https://doi.org/10.1073/pnas.1315147111
Jens Bauer
aInstitute for Applied Materials and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jens.bauer@kit.edu
Stefan Hengsbach
bKarlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Iwiza Tesari
aInstitute for Applied Materials and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ruth Schwaiger
aInstitute for Applied Materials and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Oliver Kraft
aInstitute for Applied Materials and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited* by William D. Nix, Stanford University, Stanford, CA, and approved January 9, 2014 (received for review August 12, 2013)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

It has been a long-standing effort to create materials with low density but high strength. Technical foams are very light, but compared with bulk materials, their strength is quite low because of their random structure. Natural lightweight materials, such as bone, are cellular solids with optimized architecture. They are structured hierarchically and actually consist of nanometer-size building blocks, providing a benefit from mechanical size effects. In this paper, we demonstrate that materials with a designed microarchitecture, which provides both structural advantages and size-dependent strengthening effects, may be fabricated. Using 3D laser lithography, we produced micro-truss and -shell structures from ceramic–polymer composites that exceed the strength-to-weight ratio of all engineering materials, with a density below 1,000 kg/m3.

Abstract

To enhance the strength-to-weight ratio of a material, one may try to either improve the strength or lower the density, or both. The lightest solid materials have a density in the range of 1,000 kg/m3; only cellular materials, such as technical foams, can reach considerably lower values. However, compared with corresponding bulk materials, their specific strength generally is significantly lower. Cellular topologies may be divided into bending- and stretching-dominated ones. Technical foams are structured randomly and behave in a bending-dominated way, which is less weight efficient, with respect to strength, than stretching-dominated behavior, such as in regular braced frameworks. Cancellous bone and other natural cellular solids have an optimized architecture. Their basic material is structured hierarchically and consists of nanometer-size elements, providing a benefit from size effects in the material strength. Designing cellular materials with a specific microarchitecture would allow one to exploit the structural advantages of stretching-dominated constructions as well as size-dependent strengthening effects. In this paper, we demonstrate that such materials may be fabricated. Applying 3D laser lithography, we produced and characterized micro-truss and -shell structures made from alumina–polymer composite. Size-dependent strengthening of alumina shells has been observed, particularly when applied with a characteristic thickness below 100 nm. The presented artificial cellular materials reach compressive strengths up to 280 MPa with densities well below 1,000 kg/m3.

Footnotes

  • ↵1To whom correspondence should be addressed. E-mail: jens.bauer{at}kit.edu.
  • Author contributions: J.B., I.T., and O.K. designed research; J.B., S.H., and R.S. performed research; J.B., S.H., I.T., and O.K. analyzed data; and J.B. wrote the paper.

  • The authors declare no conflict of interest.

  • ↵*This Direct Submission article had a prearranged editor.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1315147111/-/DCSupplemental.

Freely available online through the PNAS open access option.

Next
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
High-strength cellular ceramic composites with 3D microarchitecture
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
High-strength 3D microarchitectures
Jens Bauer, Stefan Hengsbach, Iwiza Tesari, Ruth Schwaiger, Oliver Kraft
Proceedings of the National Academy of Sciences Feb 2014, 201315147; DOI: 10.1073/pnas.1315147111

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
High-strength 3D microarchitectures
Jens Bauer, Stefan Hengsbach, Iwiza Tesari, Ruth Schwaiger, Oliver Kraft
Proceedings of the National Academy of Sciences Feb 2014, 201315147; DOI: 10.1073/pnas.1315147111
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 118 (9)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Model of the Amazon forest
News Feature: A sea in the Amazon
Did the Caribbean sweep into the western Amazon millions of years ago, shaping the region’s rich biodiversity?
Image credit: Tacio Cordeiro Bicudo (University of São Paulo, São Paulo, Brazil), Victor Sacek (University of São Paulo, São Paulo, Brazil), and Lucy Reading-Ikkanda (artist).
Syrian archaeological site
Journal Club: In Mesopotamia, early cities may have faltered before climate-driven collapse
Settlements 4,200 years ago may have suffered from overpopulation before drought and lower temperatures ultimately made them unsustainable.
Image credit: Andrea Ricci.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Birds nestling on tree branches
Parent–offspring conflict in songbird fledging
Some songbird parents might improve their own fitness by manipulating their offspring into leaving the nest early, at the cost of fledgling survival, a study finds.
Image credit: Gil Eckrich (photographer).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490