New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Universal mobile electrochemical detector designed for use in resource-limited applications
Edited by Alexis T. Bell, University of California, Berkeley, CA, and approved June 30, 2014 (received for review March 30, 2014)

Significance
The ability to perform electrochemical testing in the field, and in resource-limited environments, and to transmit data automatically to “the cloud” can enable a broad spectrum of analyses useful for personal and public health, clinical analysis, food safety, and environmental monitoring. Although the developed world has many options for analysis and web connection, the developing world does not have broad access to either the expensive equipment necessary to perform these tests or the advanced technologies required for network connectivity. To overcome these limitations, we have developed a simple, affordable, handheld device that can perform all the most common electrochemical analyses, and transmit the results of testing to the cloud from any phone, over any network, anywhere in the world.
Abstract
This paper describes an inexpensive, handheld device that couples the most common forms of electrochemical analysis directly to “the cloud” using any mobile phone, for use in resource-limited settings. The device is designed to operate with a wide range of electrode formats, performs on-board mixing of samples by vibration, and transmits data over voice using audio—an approach that guarantees broad compatibility with any available mobile phone (from low-end phones to smartphones) or cellular network (second, third, and fourth generation). The electrochemical methods that we demonstrate enable quantitative, broadly applicable, and inexpensive sensing with flexibility based on a wide variety of important electroanalytical techniques (chronoamperometry, cyclic voltammetry, differential pulse voltammetry, square wave voltammetry, and potentiometry), each with different uses. Four applications demonstrate the analytical performance of the device: these involve the detection of (i) glucose in the blood for personal health, (ii) trace heavy metals (lead, cadmium, and zinc) in water for in-field environmental monitoring, (iii) sodium in urine for clinical analysis, and (iv) a malarial antigen (Plasmodium falciparum histidine-rich protein 2) for clinical research. The combination of these electrochemical capabilities in an affordable, handheld format that is compatible with any mobile phone or network worldwide guarantees that sophisticated diagnostic testing can be performed by users with a broad spectrum of needs, resources, and levels of technical expertise.
Footnotes
- ↵1To whom correspondence should be addressed. Email: gwhitesides{at}gmwgroup.harvard.edu.
Author contributions: A.N., D.C.C., J.W.H., A.A.K., E.J.M., and G.M.W. designed research; A.N., D.C.C., J.W.H., A.A.K., and E.J.M. performed research; A.N., D.C.C., J.W.H., A.A.K., and E.J.M. contributed new reagents/analytic tools; A.N., D.C.C., J.W.H., A.A.K., E.J.M., M.T.F.-A., and G.M.W. analyzed data; and A.N., D.C.C., J.W.H., A.A.K., E.J.M., M.T.F.-A., and G.M.W. wrote the paper.
The authors declare no conflict of interest.
This article is a PNAS Direct Submission.
This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405679111/-/DCSupplemental.