Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Overtone-based pitch selection in hermit thrush song: Unexpected convergence with scale construction in human music

Emily L. Doolittle, Bruno Gingras, Dominik M. Endres, and W. Tecumseh Fitch
PNAS first published November 3, 2014; https://doi.org/10.1073/pnas.1406023111
Emily L. Doolittle
aDepartment of Music, Cornish College of the Arts, Seattle, WA 98121;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bruno Gingras
bDepartment of Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna A-1090, Austria;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dominik M. Endres
cTheoretical Neuroscience Group, Philipps University of Marburg, 35032 Marburg, Germany; and
dSection for Computational Sensomotorics, Hertie Institute for Clinical Brain Research, Center for Integrative Neuroscience, Bernstein Center for Computational Neuroscience, and University Clinic Tübingen, 72076 Tübingen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W. Tecumseh Fitch
bDepartment of Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna A-1090, Austria;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: tecumseh.fitch@univie.ac.at
  1. Edited by Dale Purves, Duke University, Durham, NC, and approved October 8, 2014 (received for review April 3, 2014)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

The song of the hermit thrush, a common North American songbird, is renowned for its apparent musicality and has attracted the attention of musicians and ornithologists for more than a century. Here we show that hermit thrush songs, like much human music, use pitches that are mathematically related by simple integer ratios and follow the harmonic series. Our findings add to a small but growing body of research showing that a preference for small-integer ratio intervals is not unique to humans and are thus particularly relevant to the ongoing nature/nurture debate about whether musical predispositions such as the preference for consonant intervals are biologically or culturally driven.

Abstract

Many human musical scales, including the diatonic major scale prevalent in Western music, are built partially or entirely from intervals (ratios between adjacent frequencies) corresponding to small-integer proportions drawn from the harmonic series. Scientists have long debated the extent to which principles of scale generation in human music are biologically or culturally determined. Data from animal “song” may provide new insights into this discussion. Here, by examining pitch relationships using both a simple linear regression model and a Bayesian generative model, we show that most songs of the hermit thrush (Catharus guttatus) favor simple frequency ratios derived from the harmonic (or overtone) series. Furthermore, we show that this frequency selection results not from physical constraints governing peripheral production mechanisms but from active selection at a central level. These data provide the most rigorous empirical evidence to date of a bird song that makes use of the same mathematical principles that underlie Western and many non-Western musical scales, demonstrating surprising convergence between human and animal “song cultures.” Although there is no evidence that the songs of most bird species follow the overtone series, our findings add to a small but growing body of research showing that a preference for small-integer frequency ratios is not unique to humans. These findings thus have important implications for current debates about the origins of human musical systems and may call for a reevaluation of existing theories of musical consonance based on specific human vocal characteristics.

  • music
  • birdsong
  • overtones

Footnotes

  • ↵1E.L.D. and B.G. contributed equally to this work.

  • ↵2To whom correspondence should be addressed. Email: tecumseh.fitch{at}univie.ac.at.
  • Author contributions: E.L.D. and W.T.F. designed research; E.L.D. and W.T.F. performed research; E.L.D., B.G., and D.M.E. analyzed data; and E.L.D., B.G., D.M.E., and W.T.F. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1406023111/-/DCSupplemental.

Freely available online through the PNAS open access option.

Next
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Overtone-based pitch selection in hermit thrush song: Unexpected convergence with scale construction in human music
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Overtone-based pitch choice in hermit thrush song
Emily L. Doolittle, Bruno Gingras, Dominik M. Endres, W. Tecumseh Fitch
Proceedings of the National Academy of Sciences Nov 2014, 201406023; DOI: 10.1073/pnas.1406023111

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Overtone-based pitch choice in hermit thrush song
Emily L. Doolittle, Bruno Gingras, Dominik M. Endres, W. Tecumseh Fitch
Proceedings of the National Academy of Sciences Nov 2014, 201406023; DOI: 10.1073/pnas.1406023111
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 118 (8)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Surgeons hands during surgery
Inner Workings: Advances in infectious disease treatment promise to expand the pool of donor organs
Despite myriad challenges, clinicians see room for progress.
Image credit: Shutterstock/David Tadevosian.
Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Double helix
Journal Club: Noncoding DNA shown to underlie function, cause limb malformations
Using CRISPR, researchers showed that a region some used to label “junk DNA” has a major role in a rare genetic disorder.
Image credit: Nathan Devery.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Multi-color molecular model
Enzymatic breakdown of PET plastic
A study demonstrates how two enzymes—MHETase and PETase—work synergistically to depolymerize the plastic pollutant PET.
Image credit: Aaron McGeehan (artist).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490