Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Economic optimization of a global strategy to address the pandemic threat

Jamison Pike, Tiffany Bogich, Sarah Elwood, David C. Finnoff, and Peter Daszak
PNAS first published December 15, 2014; https://doi.org/10.1073/pnas.1412661112
Jamison Pike
aDepartment of Economics and Finance, College of Business, University of Wyoming, Laramie, WY 82071;
bEcoHealth Alliance, New York, NY 10001;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tiffany Bogich
bEcoHealth Alliance, New York, NY 10001;
cFogarty International Center, National Institutes of Health, Bethesda, MD 20892; and
dDepartment of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sarah Elwood
bEcoHealth Alliance, New York, NY 10001;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David C. Finnoff
aDepartment of Economics and Finance, College of Business, University of Wyoming, Laramie, WY 82071;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter Daszak
bEcoHealth Alliance, New York, NY 10001;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: daszak@ecohealthalliance.org
  1. Edited by Robert M. May, University of Oxford, Oxford, United Kingdom, and approved November 17, 2014 (received for review July 4, 2014)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Emerging pandemics are increasing in frequency, threatening global health and economic growth. Global strategies to thwart pandemics can be classed as adaptive (reducing impact after a disease emerges) or mitigation (reducing the causes of pandemics). Our economic analysis shows that the optimal time to implement a globally coordinated adaptive policy is within 27 y and that given geopolitical challenges around pandemic control, these should be implemented urgently. Furthermore, we find that mitigation policies, those aimed at reducing the likelihood of an emerging disease originating, are more cost effective, saving between $344.0 billion and $360.8 billion over the next 100 y if implemented today.

Abstract

Emerging pandemics threaten global health and economies and are increasing in frequency. Globally coordinated strategies to combat pandemics, similar to current strategies that address climate change, are largely adaptive, in that they attempt to reduce the impact of a pathogen after it has emerged. However, like climate change, mitigation strategies have been developed that include programs to reduce the underlying drivers of pandemics, particularly animal-to-human disease transmission. Here, we use real options economic modeling of current globally coordinated adaptation strategies for pandemic prevention. We show that they would be optimally implemented within 27 y to reduce the annual rise of emerging infectious disease events by 50% at an estimated one-time cost of approximately $343.7 billion. We then analyze World Bank data on multilateral “One Health” pandemic mitigation programs. We find that, because most pandemics have animal origins, mitigation is a more cost-effective policy than business-as-usual adaptation programs, saving between $344.0.7 billion and $360.3 billion over the next 100 y if implemented today. We conclude that globally coordinated pandemic prevention policies need to be enacted urgently to be optimally effective and that strategies to mitigate pandemics by reducing the impact of their underlying drivers are likely to be more effective than business as usual.

  • emerging infectious diseases
  • One Health
  • adaptation
  • mitigation
  • climate change

Footnotes

  • ↵1To whom correspondence should be addressed. Email: daszak{at}ecohealthalliance.org.
  • Author contributions: J.P., T.B., D.C.F., and P.D. designed research; J.P., S.E., D.C.F., and P.D. performed research; J.P. and D.C.F. analyzed data; and J.P., T.B., S.E., D.C.F., and P.D. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1412661112/-/DCSupplemental.

Freely available online through the PNAS open access option.

Next
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Economic optimization of a global strategy to address the pandemic threat
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Economic optimization of global pandemic strategy
Jamison Pike, Tiffany Bogich, Sarah Elwood, David C. Finnoff, Peter Daszak
Proceedings of the National Academy of Sciences Dec 2014, 201412661; DOI: 10.1073/pnas.1412661112

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Economic optimization of global pandemic strategy
Jamison Pike, Tiffany Bogich, Sarah Elwood, David C. Finnoff, Peter Daszak
Proceedings of the National Academy of Sciences Dec 2014, 201412661; DOI: 10.1073/pnas.1412661112
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 118 (4)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Large piece of gold
News Feature: Tracing gold's cosmic origins
Astronomers thought they’d finally figured out where gold and other heavy elements in the universe came from. In light of recent results, they’re not so sure.
Image credit: Science Source/Tom McHugh.
Dancers in red dresses
Journal Club: Friends appear to share patterns of brain activity
Researchers are still trying to understand what causes this strong correlation between neural and social networks.
Image credit: Shutterstock/Yeongsik Im.
Yellow emoticons
Learning the language of facial expressions
Aleix Martinez explains why facial expressions often are not accurate indicators of emotion.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490