Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology

Gracility of the modern Homo sapiens skeleton is the result of decreased biomechanical loading

Timothy M. Ryan and Colin N. Shaw
PNAS published ahead of print December 22, 2014 https://doi.org/10.1073/pnas.1418646112
Timothy M. Ryan
aDepartment of Anthropology,bCenter for Quantitative Imaging, EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: tmr21@psu.edu
Colin N. Shaw
cPhenotypic Adaptability, Variation and Evolution Research Group,dMcDonald Institute for Archaeological Research, Department of Archaeology and Anthropology, andeCambridge BioTomography Centre, Department of Zoology, University of Cambridge, Cambridge CB2 3QG, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Clark Spencer Larsen, The Ohio State University, Columbus, OH, and accepted by the Editorial Board November 20, 2014 (received for review September 29, 2014)

See related content:

  • Recent origin of low trabecular bone density in modern humans
    - Jan 13, 2015
  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Compared with other primates and earlier human species, contemporary humans possess relatively lightly built skeletons. Previous studies suggest that skeletal gracility results from a lack of physical activity because of increased reliance on culture, is a biomechanical consequence of bipedal locomotion, or reflects systemic physiological differences between modern humans and other primates. We found that bone strength in the hip joint of human foragers is comparable to similarly sized nonhuman primates, and is significantly more robust than sedentary agriculturalists. These results conclusively demonstrate the utility of trabecular bone structure for differentiating activity and mobility patterns among prehistoric hominins and reveal that low levels of physical activity contribute to reduced bone strength, and consequently increased fracture risk, in contemporary human populations.

Abstract

The postcranial skeleton of modern Homo sapiens is relatively gracile compared with other hominoids and earlier hominins. This gracility predisposes contemporary humans to osteoporosis and increased fracture risk. Explanations for this gracility include reduced levels of physical activity, the dissipation of load through enlarged joint surfaces, and selection for systemic physiological characteristics that differentiate modern humans from other primates. This study considered the skeletal remains of four behaviorally diverse recent human populations and a large sample of extant primates to assess variation in trabecular bone structure in the human hip joint. Proximal femur trabecular bone structure was quantified from microCT data for 229 individuals from 31 extant primate taxa and 59 individuals from four distinct archaeological human populations representing sedentary agriculturalists and mobile foragers. Analyses of mass-corrected trabecular bone variables reveal that the forager populations had significantly higher bone volume fraction, thicker trabeculae, and consequently lower relative bone surface area compared with the two agriculturalist groups. There were no significant differences between the agriculturalist and forager populations for trabecular spacing, number, or degree of anisotropy. These results reveal a correspondence between human behavior and bone structure in the proximal femur, indicating that more highly mobile human populations have trabecular bone structure similar to what would be expected for wild nonhuman primates of the same body mass. These results strongly emphasize the importance of physical activity and exercise for bone health and the attenuation of age-related bone loss.

  • trabecular bone
  • gracilization
  • human evolution
  • biomechanics
  • mobility

Footnotes

  • ↵1To whom correspondence should be addressed. Email: tmr21{at}psu.edu.
  • Author contributions: T.M.R. and C.N.S. designed research, performed research, analyzed data, and wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission. C.S.L. is a guest editor invited by the Editorial Board.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1418646112/-/DCSupplemental.

Next
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Gracility of the modern Homo sapiens skeleton is the result of decreased biomechanical loading
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
Citation Tools
Skeletal gracility in modern humans
Timothy M. Ryan, Colin N. Shaw
Proceedings of the National Academy of Sciences Dec 2014, 201418646; DOI: 10.1073/pnas.1418646112

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Skeletal gracility in modern humans
Timothy M. Ryan, Colin N. Shaw
Proceedings of the National Academy of Sciences Dec 2014, 201418646; DOI: 10.1073/pnas.1418646112
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 116 (7)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Several aspects of the proposal, which aims to expand open access, require serious discussion and, in some cases, a rethink.
Opinion: “Plan S” falls short for society publishers—and for the researchers they serve
Several aspects of the proposal, which aims to expand open access, require serious discussion and, in some cases, a rethink.
Image credit: Dave Cutler (artist).
Several large or long-lived animals seem strangely resistant to developing cancer. Elucidating the reasons why could lead to promising cancer-fighting strategies in humans.
Core Concept: Solving Peto’s Paradox to better understand cancer
Several large or long-lived animals seem strangely resistant to developing cancer. Elucidating the reasons why could lead to promising cancer-fighting strategies in humans.
Image credit: Shutterstock.com/ronnybas frimages.
Featured Profile
PNAS Profile of NAS member and biochemist Hao Wu
 Nonmonogamous strawberry poison frog (Oophaga pumilio).  Image courtesy of Yusan Yang (University of Pittsburgh, Pittsburgh).
Putative signature of monogamy
A study suggests a putative gene-expression hallmark common to monogamous male vertebrates of some species, namely cichlid fishes, dendrobatid frogs, passeroid songbirds, common voles, and deer mice, and identifies 24 candidate genes potentially associated with monogamy.
Image courtesy of Yusan Yang (University of Pittsburgh, Pittsburgh).
Active lifestyles. Image courtesy of Pixabay/MabelAmber.
Meaningful life tied to healthy aging
Physical and social well-being in old age are linked to self-assessments of life worth, and a spectrum of behavioral, economic, health, and social variables may influence whether aging individuals believe they are leading meaningful lives.
Image courtesy of Pixabay/MabelAmber.

More Articles of This Classification

Biological Sciences

  • Structural basis for activity of TRIC counter-ion channels in calcium release
  • PGC1A regulates the IRS1:IRS2 ratio during fasting to influence hepatic metabolism downstream of insulin
  • Altered neural odometry in the vertical dimension
Show more

Anthropology

  • Radiocarbon dates and Bayesian modeling support maritime diffusion model for megaliths in Europe
  • Enabling creative collaboration for all levels of learning
  • Facial masculinity does not appear to be a condition-dependent male ornament and does not reflect MHC heterozygosity in humans
Show more

Related Content

  • Recent origin of low trabecular bone density
  • In This Issue
  • Scopus
  • PubMed
  • Google Scholar

Cited by...

  • Gradual decline in mobility with the adoption of food production in Europe
  • Scopus (59)
  • Google Scholar

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Classics
  • Front Matter
  • Teaching Resources
  • Anthropology
  • Chemistry
  • Physics
  • Sustainability Science

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Press
  • Site Map

Feedback    Privacy/Legal

Copyright © 2019 National Academy of Sciences. Online ISSN 1091-6490