Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity

Matthieu Leray and Nancy Knowlton
  1. National Museum of Natural History, Smithsonian Institution, Washington, DC 20013

See allHide authors and affiliations

PNAS first published February 2, 2015; https://doi.org/10.1073/pnas.1424997112
Matthieu Leray
National Museum of Natural History, Smithsonian Institution, Washington, DC 20013
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nancy Knowlton
National Museum of Natural History, Smithsonian Institution, Washington, DC 20013
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: knowlton@si.edu
  1. Contributed by Nancy Knowlton, December 31, 2014 (sent for review October 29, 2014; reviewed by Naiara Rodriguez-Ezpeleta and Robert Toonen)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

High-throughput DNA sequencing methods are revolutionizing our ability to census communities, but most analyses have focused on microbes. Using an environmental DNA sequencing approach based on cytochrome c oxidase subunit 1 primers, we document the enormous diversity and fine-scale geographic structuring of the cryptic animals living on oyster reefs, many of which are rare and very small. Sequence data reflected both the presence and relative abundance of organisms, but only 10.9% of the sequences could be matched to reference barcodes in public databases. These results highlight the enormous numbers of marine animal species that remain genetically unanchored to conventional taxonomy and the importance of standardized, genetically based biodiversity surveys to monitor global change.

Abstract

Documenting the diversity of marine life is challenging because many species are cryptic, small, and rare, and belong to poorly known groups. New sequencing technologies, especially when combined with standardized sampling, promise to make comprehensive biodiversity assessments and monitoring feasible on a large scale. We used this approach to characterize patterns of diversity on oyster reefs across a range of geographic scales comprising a temperate location [Virginia (VA)] and a subtropical location [Florida (FL)]. Eukaryotic organisms that colonized multilayered settlement surfaces (autonomous reef monitoring structures) over a 6-mo period were identified by cytochrome c oxidase subunit I barcoding (>2-mm mobile organisms) and metabarcoding (sessile and smaller mobile organisms). In a total area of ∼15.64 m2 and volume of ∼0.09 m3, 2,179 operational taxonomic units (OTUs) were recorded from 983,056 sequences. However, only 10.9% could be matched to reference barcodes in public databases, with only 8.2% matching barcodes with both genus and species names. Taxonomic coverage was broad, particularly for animals (22 phyla recorded), but 35.6% of OTUs detected via metabarcoding could not be confidently assigned to a taxonomic group. The smallest size fraction (500 to 106 μm) was the most diverse (more than two-thirds of OTUs). There was little taxonomic overlap between VA and FL, and samples separated by ∼2 m were significantly more similar than samples separated by ∼100 m. Ground-truthing with independent assessments of taxonomic composition indicated that both presence–absence information and relative abundance information are captured by metabarcoding data, suggesting considerable potential for ecological studies and environmental monitoring.

  • oyster reefs
  • operational taxonomic units
  • meiofauna
  • ARMS
  • cryptic species

Footnotes

  • ↵1To whom correspondence should be addressed. Email: knowlton{at}si.edu.
  • Author contributions: M.L. and N.K. designed research; M.L. performed research; M.L. contributed new reagents/analytic tools; M.L. analyzed data; and M.L. and N.K. wrote the paper.

  • Reviewers: N.R.-E., AZTI-Tecnalia; and R.T., Hawaii Institute of Marine Biology.

  • The authors declare no conflict of interest.

  • Data deposition: The sequences reported in this paper have been deposited in the GenBank database (accession nos. KP253982–KP255345), the Barcode Of Life Data Systems (doi: dx.doi.org/10.5883/DS-ARMS), and the Dryad Digital Repository (doi: doi.org/10.5061/dryad.d0r79).

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424997112/-/DCSupplemental.

Freely available online through the PNAS open access option.

Next
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Diversity patterns in cryptic benthic communities
Matthieu Leray, Nancy Knowlton
Proceedings of the National Academy of Sciences Feb 2015, 201424997; DOI: 10.1073/pnas.1424997112

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Diversity patterns in cryptic benthic communities
Matthieu Leray, Nancy Knowlton
Proceedings of the National Academy of Sciences Feb 2015, 201424997; DOI: 10.1073/pnas.1424997112
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 118 (9)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Model of the Amazon forest
News Feature: A sea in the Amazon
Did the Caribbean sweep into the western Amazon millions of years ago, shaping the region’s rich biodiversity?
Image credit: Tacio Cordeiro Bicudo (University of São Paulo, São Paulo, Brazil), Victor Sacek (University of São Paulo, São Paulo, Brazil), and Lucy Reading-Ikkanda (artist).
Syrian archaeological site
Journal Club: In Mesopotamia, early cities may have faltered before climate-driven collapse
Settlements 4,200 years ago may have suffered from overpopulation before drought and lower temperatures ultimately made them unsustainable.
Image credit: Andrea Ricci.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Birds nestling on tree branches
Parent–offspring conflict in songbird fledging
Some songbird parents might improve their own fitness by manipulating their offspring into leaving the nest early, at the cost of fledgling survival, a study finds.
Image credit: Gil Eckrich (photographer).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490