Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system

Kabin Xie, Bastian Minkenberg, and View ORCID ProfileYinong Yang
  1. Department of Plant Pathology and Environmental Microbiology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802

See allHide authors and affiliations

PNAS first published March 2, 2015; https://doi.org/10.1073/pnas.1420294112
Kabin Xie
Department of Plant Pathology and Environmental Microbiology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bastian Minkenberg
Department of Plant Pathology and Environmental Microbiology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yinong Yang
Department of Plant Pathology and Environmental Microbiology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yinong Yang
  • For correspondence: yuy3@psu.edu
  1. Edited by Jennifer A. Doudna, University of California, Berkeley, CA, and approved February 3, 2015 (received for review October 22, 2014)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) system has recently emerged as an efficient and versatile tool for genome editing in various organisms. However, its targeting capability and multiplex editing efficiency are often limited by the guide RNA (gRNA)-expressing device. This study demonstrates a general strategy and platform for precise processing and efficient production of numerous gRNAs in vivo from a synthetic polycistronic gene via the endogenous tRNA-processing system. This strategy is shown to significantly increase CRISPR/Cas9 multiplex editing capability and efficiency in plants and is expected to have broad applications for small RNA expression and genome engineering.

Abstract

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) system is being harnessed as a powerful tool for genome engineering in basic research, molecular therapy, and crop improvement. This system uses a small guide RNA (gRNA) to direct Cas9 endonuclease to a specific DNA site; thus, its targeting capability is largely constrained by the gRNA-expressing device. In this study, we developed a general strategy to produce numerous gRNAs from a single polycistronic gene. The endogenous tRNA-processing system, which precisely cleaves both ends of the tRNA precursor, was engineered as a simple and robust platform to boost the targeting and multiplex editing capability of the CRISPR/Cas9 system. We demonstrated that synthetic genes with tandemly arrayed tRNA–gRNA architecture were efficiently and precisely processed into gRNAs with desired 5′ targeting sequences in vivo, which directed Cas9 to edit multiple chromosomal targets. Using this strategy, multiplex genome editing and chromosomal-fragment deletion were readily achieved in stable transgenic rice plants with a high efficiency (up to 100%). Because tRNA and its processing system are virtually conserved in all living organisms, this method could be broadly used to boost the targeting capability and editing efficiency of CRISPR/Cas9 toolkits.

  • CRISPR/Cas9
  • tRNA processing
  • genome editing
  • multiplex

Footnotes

  • ↵1To whom correspondence should be addressed. Email: yuy3{at}psu.edu.
  • Author contributions: K.X. and Y.Y. designed research; K.X. and B.M. performed research; K.X., B.M., and Y.Y. analyzed data; and K.X. and Y.Y. wrote the paper.

  • Conflict of interest statement: The Pennsylvania State University filed a provisional patent application related to this study.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1420294112/-/DCSupplemental.

Next
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Improving multiplex editing via tRNA processing
Kabin Xie, Bastian Minkenberg, Yinong Yang
Proceedings of the National Academy of Sciences Mar 2015, 201420294; DOI: 10.1073/pnas.1420294112

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Improving multiplex editing via tRNA processing
Kabin Xie, Bastian Minkenberg, Yinong Yang
Proceedings of the National Academy of Sciences Mar 2015, 201420294; DOI: 10.1073/pnas.1420294112
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 118 (14)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Smoke emanates from Japan’s Fukushima nuclear power plant a few days after tsunami damage
Core Concept: Muography offers a new way to see inside a multitude of objects
Muons penetrate much further than X-rays, they do essentially zero damage, and they are provided for free by the cosmos.
Image credit: Science Source/Digital Globe.
Water from a faucet fills a glass.
News Feature: How “forever chemicals” might impair the immune system
Researchers are exploring whether these ubiquitous fluorinated molecules might worsen infections or hamper vaccine effectiveness.
Image credit: Shutterstock/Dmitry Naumov.
Venus flytrap captures a fly.
Journal Club: Venus flytrap mechanism could shed light on how plants sense touch
One protein seems to play a key role in touch sensitivity for flytraps and other meat-eating plants.
Image credit: Shutterstock/Kuttelvaserova Stuchelova.
Illustration of groups of people chatting
Exploring the length of human conversations
Adam Mastroianni and Daniel Gilbert explore why conversations almost never end when people want them to.
Listen
Past PodcastsSubscribe
Panda bear hanging in a tree
How horse manure helps giant pandas tolerate cold
A study finds that giant pandas roll in horse manure to increase their cold tolerance.
Image credit: Fuwen Wei.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Cozzarelli Prize
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490