New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Early land use and centennial scale changes in lake-water organic carbon prior to contemporary monitoring
Edited by Edward A. Boyle, Massachusetts Institute of Technology, Cambridge, MA, and approved April 23, 2015 (received for review January 23, 2015)

Significance
Monitoring programs have recorded increases in organic carbon concentrations in northern lakes, which have important implications for water quality and ecosystem functioning. Current hypotheses interpret this trend in light of recent environmental changes such as acidification and climate but do not include an examination of long-term changes and their causes. We inferred past trends from sediment archives across central Sweden, allowing us to assess recent changes on a millennial scale. Our data demonstrate that a long-term decline beginning already in the 15th century preceded the recent organic carbon increase. This was a response to spatially extensive human–landscape interactions that included forest grazing and mire exploitation, which were common across Europe and altered carbon cycling between terrestrial and aquatic ecosystems.
Abstract
Organic carbon concentrations have increased in surface waters across parts of Europe and North America during the past decades, but the main drivers causing this phenomenon are still debated. A lack of observations beyond the last few decades inhibits a better mechanistic understanding of this process and thus a reliable prediction of future changes. Here we present past lake-water organic carbon trends inferred from sediment records across central Sweden that allow us to assess the observed increase on a centennial to millennial time scale. Our data show the recent increase in lake-water carbon but also that this increase was preceded by a landscape-wide, long-term decrease beginning already A.D. 1450–1600. Geochemical and biological proxies reveal that these dynamics coincided with an intensification of human catchment disturbance that decreased over the past century. Catchment disturbance was driven by the expansion and later cessation of widespread summer forest grazing and farming across central Scandinavia. Our findings demonstrate that early land use strongly affected past organic carbon dynamics and suggest that the influence of historical landscape utilization on contemporary changes in lake-water carbon levels has thus far been underestimated. We propose that past changes in land use are also a strong contributing factor in ongoing organic carbon trends in other regions that underwent similar comprehensive changes due to early cultivation and grazing over centuries to millennia.
Footnotes
- ↵1To whom correspondence should be addressed. Email: carsten.meyerjacob{at}gmail.com.
Author contributions: C.M.-J. and R.B. designed research; C.M.-J., J.T., C.B., H.Y., and R.B. performed research; C.M.-J., J.T., C.B., and H.Y. analyzed data; and C.M.-J. and R.B. wrote the paper.
The authors declare no conflict of interest.
This article is a PNAS Direct Submission.
This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1501505112/-/DCSupplemental.