Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Constraint, natural selection, and the evolution of human body form

Kristen R. R. Savell, Benjamin M. Auerbach, and Charles C. Roseman
  1. aDepartment of Anthropology, The University of Tennessee, Knoxville, TN 37996;
  2. bDepartment of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 1N4;
  3. cProgram in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL 61802

See allHide authors and affiliations

PNAS first published August 1, 2016; https://doi.org/10.1073/pnas.1603632113
Kristen R. R. Savell
aDepartment of Anthropology, The University of Tennessee, Knoxville, TN 37996;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ksavell@vols.utk.edu
Benjamin M. Auerbach
aDepartment of Anthropology, The University of Tennessee, Knoxville, TN 37996;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Charles C. Roseman
bDepartment of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 1N4;
cProgram in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL 61802
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Richard G. Klein, Stanford University, Stanford, CA, and approved May 26, 2016 (received for review March 3, 2016)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Human morphological variation is thought to have been partially shaped by natural selection associated with environmental factors like climate. Patterns of variation in body form correspond with latitude, but evolutionary processes that yielded this variation are not yet established. Examining the traits used in these studies (e.g., limb lengths) independently ignores their genetic covariation, which affects their responses to evolutionary forces. To address this relationship, we estimated the directional selection necessary to evolve correlated traits reflecting body shape across latitudes and examined trait-specific responses. Although most traits appear to be under directional selection, their response is constrained by between-trait covariance. This finding suggests that trait differences among human groups may not directly reflect the forces of selection that shaped them.

Abstract

Variation in body form among human groups is structured by a blend of natural selection driven by local climatic conditions and random genetic drift. However, attempts to test ecogeographic hypotheses have not distinguished between adaptive traits (i.e., those that evolved as a result of selection) and those that evolved as a correlated response to selection on other traits (i.e., nonadaptive traits), complicating our understanding of the relationship between climate and morphological distinctions among populations. Here, we use evolutionary quantitative methods to test if traits previously identified as supporting ecogeographic hypotheses were actually adaptive by estimating the force of selection on individual traits needed to drive among-group differentiation. Our results show that not all associations between trait means and latitude were caused by selection acting directly on each individual trait. Although radial and tibial length and biiliac and femoral head breadth show signs of responses to directional selection matching ecogeographic hypotheses, the femur was subject to little or no directional selection despite having shorter values by latitude. Additionally, in contradiction to ecogeographic hypotheses, the humerus was under directional selection for longer values by latitude. Responses to directional selection in the tibia and radius induced a nonadaptive correlated response in the humerus that overwhelmed its own trait-specific response to selection. This result emphasizes that mean differences between groups are not good indicators of which traits are adaptations in the absence of information about covariation among characteristics.

  • natural selection
  • ecogeographic variation
  • Bergmann's rule
  • Allen's rule
  • evolutionary constraints

Footnotes

  • ↵1To whom correspondence should be addressed. Email: ksavell{at}vols.utk.edu.
  • Author contributions: B.M.A. and C.C.R. designed research; K.R.R.S., B.M.A., and C.C.R. performed research; K.R.R.S. and C.C.R. analyzed data; and K.R.R.S., B.M.A., and C.C.R. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603632113/-/DCSupplemental.

View Full Text
Next
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Constraint, natural selection, and the evolution of human body form
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Constraint, selection, and human form evolution
Kristen R. R. Savell, Benjamin M. Auerbach, Charles C. Roseman
Proceedings of the National Academy of Sciences Aug 2016, 201603632; DOI: 10.1073/pnas.1603632113

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Constraint, selection, and human form evolution
Kristen R. R. Savell, Benjamin M. Auerbach, Charles C. Roseman
Proceedings of the National Academy of Sciences Aug 2016, 201603632; DOI: 10.1073/pnas.1603632113
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 118 (15)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Conclusions
    • Materials and Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Water from a faucet fills a glass.
News Feature: How “forever chemicals” might impair the immune system
Researchers are exploring whether these ubiquitous fluorinated molecules might worsen infections or hamper vaccine effectiveness.
Image credit: Shutterstock/Dmitry Naumov.
Reflection of clouds in the still waters of Mono Lake in California.
Inner Workings: Making headway with the mysteries of life’s origins
Recent experiments and simulations are starting to answer some fundamental questions about how life came to be.
Image credit: Shutterstock/Radoslaw Lecyk.
Cave in coastal Kenya with tree growing in the middle.
Journal Club: Small, sharp blades mark shift from Middle to Later Stone Age in coastal Kenya
Archaeologists have long tried to define the transition between the two time periods.
Image credit: Ceri Shipton.
Illustration of groups of people chatting
Exploring the length of human conversations
Adam Mastroianni and Daniel Gilbert explore why conversations almost never end when people want them to.
Listen
Past PodcastsSubscribe
Panda bear hanging in a tree
How horse manure helps giant pandas tolerate cold
A study finds that giant pandas roll in horse manure to increase their cold tolerance.
Image credit: Fuwen Wei.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Cozzarelli Prize
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490