New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Molecular mechanism for cavitation in water under tension
Edited by Daan Frenkel, University of Cambridge, Cambridge, United Kingdom, and approved September 23, 2016 (received for review May 25, 2016)

Significance
Cavitation, the formation of vapor-filled bubbles in a liquid at low pressures, is a powerful phenomenon with important consequences in nature and technology. For instance, cavitation bubbles may interrupt water flow in plants under dry conditions or severely damage the metal surfaces of machines such as pumps and propellers. Using molecular simulations, we have studied cavitation in water at strongly negative pressures and have revealed its molecular mechanism. We find that bubble growth is governed by the viscosity of the liquid. Although small bubbles are shaped irregularly, classical nucleation theory accurately describes the free energy barrier that impedes rapid bubble formation. Our simulations indicate that water can withstand negative pressures exceeding −120 MPa in agreement with recent experiments.
Abstract
Despite its relevance in biology and engineering, the molecular mechanism driving cavitation in water remains unknown. Using computer simulations, we investigate the structure and dynamics of vapor bubbles emerging from metastable water at negative pressures. We find that in the early stages of cavitation, bubbles are irregularly shaped and become more spherical as they grow. Nevertheless, the free energy of bubble formation can be perfectly reproduced in the framework of classical nucleation theory (CNT) if the curvature dependence of the surface tension is taken into account. Comparison of the observed bubble dynamics to the predictions of the macroscopic Rayleigh–Plesset (RP) equation, augmented with thermal fluctuations, demonstrates that the growth of nanoscale bubbles is governed by viscous forces. Combining the dynamical prefactor determined from the RP equation with CNT based on the Kramers formalism yields an analytical expression for the cavitation rate that reproduces the simulation results very well over a wide range of pressures. Furthermore, our theoretical predictions are in excellent agreement with cavitation rates obtained from inclusion experiments. This suggests that homogeneous nucleation is observed in inclusions, whereas only heterogeneous nucleation on impurities or defects occurs in other experiments.
Footnotes
- ↵1To whom correspondence should be addressed. Email: christoph.dellago{at}univie.ac.at.
Author contributions: G.M., F.C., C.V., and C.D. designed research; G.M., P.G., and C.D. performed research; G.M., M.A.G., F.C., J.L.F.A., C.V., and C.D. analyzed data; and G.M., M.A.G., P.G., F.C., J.L.F.A., C.V., and C.D. wrote the paper.
The authors declare no conflict of interest.
This article is a PNAS Direct Submission.
This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608421113/-/DCSupplemental.
Citation Manager Formats
Sign up for Article Alerts
Jump to section
- Article
- Abstract
- Classical Nucleation Theory
- Free Energy of Cavitation at Negative Pressures
- Bubble Morphology
- Bubble Dynamics
- Cavitation Rates
- Conclusions
- Materials and Methods
- Calibration of the Order Parameter
- Volume of the Largest Bubble as a Reaction Coordinate
- Surface Free Energy and Curvature Dependence of the Surface Tension
- Pressure Dependence of the Cavitation Free Energy
- Curvature-Corrected Bubble Dynamics
- Viscosity of Water Under Tension
- Comparison of the Obtained Rates to Experimental Data
- Acknowledgments
- Footnotes
- References
- Figures & SI
- Info & Metrics
See related content: