Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology

Radiocarbon dates and Bayesian modeling support maritime diffusion model for megaliths in Europe

B. Schulz Paulsson
PNAS published ahead of print February 11, 2019 https://doi.org/10.1073/pnas.1813268116
B. Schulz Paulsson
aDepartment of Historical Studies, University of Gothenburg, SE-405 30 Gothenburg, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Schulz Paulsson
  • For correspondence: bettina.schulz.paulsson@gu.se
  1. Edited by James F. O’Connell, University of Utah, Salt Lake City, UT, and approved January 3, 2019 (received for review August 1, 2018)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

For thousands of years, prehistoric societies built monumental grave architecture and erected standing stones in the coastal regions of Europe (4500–2500 calibrated years BC). Our understanding of the rise of these megalithic societies is contentious and patchy; the origin for the emergence of megalithic architecture in various regions has been controversial and debated for over 100 y. The result presented here, based on analyses of 2,410 radiocarbon dates and highly precise chronologies for megalithic sites and related contexts, suggests maritime mobility and intercultural exchange. We argue for the transfer of the megalithic concept over sea routes emanating from northwest France, and for advanced maritime technology and seafaring in the megalithic Age.

Abstract

There are two competing hypotheses for the origin of megaliths in Europe. The conventional view from the late 19th and early 20th centuries was of a single-source diffusion of megaliths in Europe from the Near East through the Mediterranean and along the Atlantic coast. Following early radiocarbon dating in the 1970s, an alternative hypothesis arose of regional independent developments in Europe. This model has dominated megalith research until today. We applied a Bayesian statistical approach to 2,410 currently available radiocarbon results from megalithic, partly premegalithic, and contemporaneous nonmegalithic contexts in Europe to resolve this long-standing debate. The radiocarbon results suggest that megalithic graves emerged within a brief time interval of 200 y to 300 y in the second half of the fifth millennium calibrated years BC in northwest France, the Mediterranean, and the Atlantic coast of Iberia. We found decisive support for the spread of megaliths along the sea route in three main phases. Thus, a maritime diffusion model is the most likely explanation of their expansion.

  • megaliths
  • mobility
  • radiocarbon dates
  • Bayesian analysis
  • megalithic seafaring

Footnotes

  • ↵1Email: bettina.schulz.paulsson{at}gu.se.
  • Author contributions: B.S.P. designed research, performed research, analyzed data, and wrote the paper.

  • The author declares no conflict of interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1813268116/-/DCSupplemental.

  • Copyright © 2019 the Author(s). Published by PNAS.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Radiocarbon dates and Bayesian modeling support maritime diffusion model for megaliths in Europe
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
Citation Tools
Radiocarbon dates and Bayesian modeling support maritime diffusion model for megaliths in Europe
B. Schulz Paulsson
Proceedings of the National Academy of Sciences Feb 2019, 201813268; DOI: 10.1073/pnas.1813268116

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Radiocarbon dates and Bayesian modeling support maritime diffusion model for megaliths in Europe
B. Schulz Paulsson
Proceedings of the National Academy of Sciences Feb 2019, 201813268; DOI: 10.1073/pnas.1813268116
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 116 (7)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Several aspects of the proposal, which aims to expand open access, require serious discussion and, in some cases, a rethink.
Opinion: “Plan S” falls short for society publishers—and for the researchers they serve
Several aspects of the proposal, which aims to expand open access, require serious discussion and, in some cases, a rethink.
Image credit: Dave Cutler (artist).
Several large or long-lived animals seem strangely resistant to developing cancer. Elucidating the reasons why could lead to promising cancer-fighting strategies in humans.
Core Concept: Solving Peto’s Paradox to better understand cancer
Several large or long-lived animals seem strangely resistant to developing cancer. Elucidating the reasons why could lead to promising cancer-fighting strategies in humans.
Image credit: Shutterstock.com/ronnybas frimages.
Featured Profile
PNAS Profile of NAS member and biochemist Hao Wu
 Nonmonogamous strawberry poison frog (Oophaga pumilio).  Image courtesy of Yusan Yang (University of Pittsburgh, Pittsburgh).
Putative signature of monogamy
A study suggests a putative gene-expression hallmark common to monogamous male vertebrates of some species, namely cichlid fishes, dendrobatid frogs, passeroid songbirds, common voles, and deer mice, and identifies 24 candidate genes potentially associated with monogamy.
Image courtesy of Yusan Yang (University of Pittsburgh, Pittsburgh).
Active lifestyles. Image courtesy of Pixabay/MabelAmber.
Meaningful life tied to healthy aging
Physical and social well-being in old age are linked to self-assessments of life worth, and a spectrum of behavioral, economic, health, and social variables may influence whether aging individuals believe they are leading meaningful lives.
Image courtesy of Pixabay/MabelAmber.

More Articles of This Classification

Social Sciences

  • Emergence of analogy from relation learning
  • Defining the economic scope for ecosystem-based fishery management
  • Social threat learning transfers to decision making in humans
Show more

Anthropology

  • Enabling creative collaboration for all levels of learning
  • Facial masculinity does not appear to be a condition-dependent male ornament and does not reflect MHC heterozygosity in humans
Show more

Physical Sciences

  • Deep elastic strain engineering of bandgap through machine learning
  • Single-molecule excitation–emission spectroscopy
  • Microscopic description of acid–base equilibrium
Show more

Statistics

  • Deep elastic strain engineering of bandgap through machine learning
  • Single-molecule excitation–emission spectroscopy
  • Microscopic description of acid–base equilibrium
Show more

Related Content

  • No related articles found.
  • Google Scholar

Cited by...

  • No citing articles found.
  • Google Scholar

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Classics
  • Front Matter
  • Teaching Resources
  • Anthropology
  • Chemistry
  • Physics
  • Sustainability Science

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Press
  • Site Map

Feedback    Privacy/Legal

Copyright © 2019 National Academy of Sciences. Online ISSN 1091-6490