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The interactions between proteins, DNA, and RNA in living cells
constitute molecular networks that govern various cellular func-
tions. To investigate the global dynamical properties and stabilities
of such networks, we studied the cell-cycle regulatory network of
the budding yeast. With the use of a simple dynamical model, it
was demonstrated that the cell-cycle network is extremely stable
and robust for its function. The biological stationary state, the G1

state, is a global attractor of the dynamics. The biological pathway,
the cell-cycle sequence of protein states, is a globally attracting
trajectory of the dynamics. These properties are largely preserved
with respect to small perturbations to the network. These results
suggest that cellular regulatory networks are robustly designed for
their functions.

Despite the complex environment in and outside of the cell,
various cellular functions are carried out reliably by the

underlying biomolecular networks. How is the stability of a cell
state achieved? How can a biological pathway take the cell from
one state to another reliably? Evolution must have played a
crucial role in the selection of the architectures of these networks
for them to have such a remarkable property. Much attention has
recently been focused on the ‘‘topological’’ properties of large-
scale networks (1–5). It was argued that a power-law distribution
of connectivity, which is apparent for some bionetworks (2, 4),
is more tolerable against random failure (1). Here we address
this question from a dynamic systems point of view. We study the
network regulating the cell cycle of the budding yeast, investi-
gating its global dynamical property and stability. We find that
the stationary states of the cell, or states at the checkpoints in
general, correspond to global attractors of the dynamics: almost
all initial protein states flow to these biological stationary states.
Furthermore, the biological pathway of the cell-cycle sequence,
which is a particular trajectory in the state space, is a globally
stable and attracting trajectory of the dynamics. These dynamic
properties, arising from the underlying network connection, are
also robust against small perturbations to the network. They are
directly responsible for the robustness of the cellular process.

The Yeast Cell-Cycle Network
The cell-cycle process, by which one cell grows and divides into
two daughter cells, is a vital biological process the regulation of
which is highly conserved among the eukaryotes (6). The process
consists of four phases: G1 (in which the cell grows and, under
appropriate conditions, commits to division), S (in which the
DNA is synthesized and chromosomes replicated), G2 (a ‘‘gap’’
between S and M), and M (in which chromosomes are separated
and the cell is divided into two). After the M phase, the cell
enters the G1 phase, hence completing a ‘‘cycle.’’ The process has
been studied in great detail in the budding yeast Saccharomyces
cerevisiae, a single-cell model eukaryotic organism (see support-
ing information, which is published on the PNAS web site, for
references). There are �800 genes involved in the cell-cycle
process of the budding yeast (7). However, the number of key
regulators that are responsible for the control and regulation of
this complex process is much smaller. Based on extensive
literature studies, we have constructed a network of key regu-
lators that are known so far, as shown in Fig. 1A (for details, see
supporting information).

There are four classes of members in this regulatory network:
cyclins (Cln1, -2, and -3 and Clb1, -2, -5, and -6, which bind to
the kinase Cdc28); the inhibitors, degraders, and competitors of
the cyclin�Cdc28 complexes (Sic1, Cdh1, Cdc20, Cdc14); tran-
scription factors (SBF, MBF, Mcm1�SFF, Swi5); and check-
points (the cell size, the DNA replication and damage, and the
spindle assembly). Green arrows in Fig. 1 represent positive
regulations. For example, under rich nutrient conditions and
when the cell grows large enough, the Cln3�Cdc28 will be
‘‘activated’’, which in turn activates (by phosphorylation) a pair
of transcription factor groups, SBF and MBF, which transcrip-
tionally activate the genes of the cyclins Cln1 and -2 and Clb5 and
-6, respectively. Red arrows in Fig. 1 represent ‘‘deactivation’’
(inhibition, repression, or degradation). For example, the pro-
tein Sic1 can bind to the Clb�Cdc28 complex to inhibit its
function, Clb1 and -2 phosphorylates Swi5 to prevent its entry
into the nucleus, whereas Cdh1 targets Clb1 and -2 for degra-
dation. The cell-cycle sequence starts when the cell commits to
division by activating Cln3 (the START). The subsequent ac-
tivity of Clb5 drives the cell into the S phase. The entry into and
exit from the M phase is controlled by the activation and
degradation of Clb2. After the M phase, the cell comes back to
the stationary G1 phase, waiting for the signal for another round
of division. Thus the cell-cycle process starts with the ‘‘excita-
tion’’ from the stationary G1 state by the ‘‘cell-size’’ signal and
evolves back to the stationary G1 state through a well defined
sequence of states.

The Model and Dynamic Properties
In principle, the arrows in the network have very different time
scales of action, and a dynamic model would involve various binding
constants and rates (8, 9). However, because in the cell-cycle
network much of the biology seems to be reflected in the on–off
characteristics of the network components and we are mainly
concerned here with the overall dynamic properties and the stability
of the network, we use a simplified dynamics on the network, which
treats the nodes and arrows as logic-like operations.¶ Thus, in the
model, each node i has only two states, Si � 1 and Si � 0,
representing the active and the inactive state of the protein,
respectively. The protein states in the next time step are determined
by the protein states in the present time step via the following rule:

Si�t � 1� � �
1, �

j

aijSj�t� � 0

0, �
j

aijSj�t� � 0

Si�t�, �
j

aijSj�t� � 0

[1]
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¶Making the time constants of all arrows the same could have disastrous consequences in
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(phosphorylation and transcriptional activation) for different arrows and obtained similar
results.
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where aij � ag for a green arrow from protein j to protein i and
aij � ar for a red arrow from j to i. We first focus on the case
where all of the other checkpoints are always off, except that
of the cell size. That is, the cell size checkpoint will act as a start
signal, whereas other checkpoints will always let the ‘‘traffic’’
pass when it come to it. We therefore arrive at a slightly
simplified network shown in Fig. 1B, with 11 nodes (plus a
signal node). We have also added ‘‘self-degradation’’ (yellow
loops) to those nodes that are not negatively regulated by
others. [This is a simplification for the actual degradation
processes. See supporting information for details.] The deg-
radation is modeled as a time-delayed interaction: if a protein
with a self yellow arrow is active at time t (Si(t) � 1) and if its
total input is zero from t � 1 to t � t � td, it will be degraded
at t � t � td, i.e., Si(t � td) � 0. The results presented below
were obtained with ag � �ar � 1 and td � 1. As will be
discussed later, the overall dynamic properties of the network
are not very sensitive to the choice of these parameters.

Fixed Points. We use the dynamic model described above to study
the time evolution of the protein states. First, we study the
attractors of the network dynamics by starting from each of the
211 � 2,048 initial states in the 11-node network of Fig. 1B. We
find that all of the initial states eventually f low into one of the
seven stationary states (fixed points) shown in Table 1. Among
the seven fixed points, there is one big fixed point attracting 1,764
or �86% protein states. Remarkably, this super stable state is
the biological G1 stationary state. The advantage for a cell’s
stationary state to be a big attractor of the network is obvious:
the stability of the cell state is guaranteed. Under normal

conditions, the cell will be sitting at this fixed point, waiting for
the signal for another round of division.

Biological Pathway. Next, we start the cell-cycle process by ‘‘ex-
citing’’ the G1 stationary state with the cell size signal, and
observe that the system goes back to the G1 stationary state. The
temporal evolution of the protein states, presented in Table 2,
indeed follows the cell-cycle sequence, going from the excited G1
state (the START) to the S phase, the G2 phase, the M phase,
and finally to the stationary G1 state. This is the biological
trajectory or pathway of the cell-cycle network.

To investigate the dynamical stability of this biological path-
way, we study the dynamic trajectories of all 1,764 protein states
that will f low to the G1 fixed point. In Fig. 2, each of these protein
states is represented by a dot, with the arrows between them
indicating dynamic flows from one state to another. The bio-
logical pathway is colored in blue and so is the node representing
the G1 stationary state. We see that the dynamic flow of the
protein states is convergent onto the biological pathway, making
the pathway an attracting trajectory of the dynamics. With such
a topological structure of the phase diagram of protein states, the
cell-cycle pathway is a very stable trajectory; it is very unlikely
for a sequence of events, starting at the beginning (or at any
other point) of the cell-cycle process, to deviate from the
cell-cycle pathway. Interestingly, the topology of the converging
trajectories shown in Fig. 2 is reminiscent of the converging
kinetic pathways in protein folding where a protein sequence is
facing the challenge of finding the unique native state among a
huge number of conformations (10–12).

Comparison with Random Networks. To investigate how likely a big
fixed point and a converging pathway can arise by chance, we

Fig. 1. (A) The cell-cycle network of the budding yeast. (B) Simplified cell-cycle network with only one checkpoint ‘‘cell size.’’

Table 1. The fixed points of the cell-cycle network

Basin size Cln3 MBF SBF Cln1,2 Cdh1 Swi5 Cdc20 Clb5,6 Sic1 Clb1,2 Mcm1

1,764 0 0 0 0 1 0 0 0 1 0 0
151 0 0 1 1 0 0 0 0 0 0 0
109 0 1 0 0 1 0 0 0 1 0 0

9 0 0 0 0 0 0 0 0 1 0 0
7 0 1 0 0 0 0 0 0 1 0 0
7 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0

Each fixed point is represented in a row. The first column is the size of the basin of attraction for the fixed point; the other 11 columns
show the protein states of the fixed point. The protein states of the biggest fixed point correspond to that of the G1 stationary state.
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study an ensemble of random networks (13, 14) that have the
same numbers of nodes and links in each color as in the cell-cycle
network. We find that random networks typically have more

attractors (fixed points and limit cycles), with the average
number being 14.28. The sizes of the basins of attraction in the
random networks have a power-law distribution, as shown in Fig.

Table 2. Temporal evolution of protein states for the simplified cell-cycle network of Fig. 1B

Time Cln3 MBF SBF Cln1,2 Cdh1 Swi5
Cdc20 and

Cdc14 Clb5,6 Sic1 Clb1,2 Mcm1�SFF Phase

1 1 0 0 0 1 0 0 0 1 0 0 START
2 0 1 1 0 1 0 0 0 1 0 0 G1

3 0 1 1 1 1 0 0 0 1 0 0 G1

4 0 1 1 1 0 0 0 0 0 0 0 G1

5 0 1 1 1 0 0 0 1 0 0 0 S
6 0 1 1 1 0 0 0 1 0 1 1 G2

7 0 0 0 1 0 0 1 1 0 1 1 M
8 0 0 0 0 0 1 1 0 0 1 1 M
9 0 0 0 0 0 1 1 0 1 1 1 M

10 0 0 0 0 0 1 1 0 1 0 1 M
11 0 0 0 0 1 1 1 0 1 0 0 M
12 0 0 0 0 1 1 0 0 1 0 0 G1

13 0 0 0 0 1 0 0 0 1 0 0 Stationary G1

The right column indicates the cell-cycle phases. Note that the number of time steps in each phase do not reflect its actual duration.

Fig. 2. Dynamical trajectories of the 1,764 protein states (green nodes) flowing to the G1 fixed point (blue node). Arrows between states indicate the direction
of dynamic flow from one state to another. The cell-cycle sequence is colored blue. The size of a node and the thickness of an arrow are proportional to the
logarithm of the traffic flow passing through them.
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3A. The probability for a random network to have an attractor
of a basin size B equal to or larger than that of the cell-cycle
network (B � 1764) is 10.34%.

To quantify the ‘‘convergence’’ of trajectories, we define a
quantity wn (n � 1, 2, . . . , 2,048) for each of the 2,048 network
states that measures the overlap of its trajectory with all other
trajectories (Fig. 3C). Denote Tj,k the total traffic f low through
the arrow Aj,k that takes state j to k in one time step, i.e., Tj,k is
the total number of trajectories starting from all network states
that pass through Aj,k. If the trajectory from state n to its
attractor has Ln steps so that it consists Ln arrows Ak�1,k, k � 1,
2, . . . , Ln, wn � �k�1

Ln Tk�1,k�Ln. The overall overlap of all
trajectories in a network can be measured by W � �wn	, where the
average is over all network states. The normalized histogram of
wn for all network states is shown in Fig. 3B for both the cell-cycle
and the random networks. Without any significant overlap or
convergence of trajectories and with a much shorter transient
times to attractors, the random networks have their w distribu-

tion peaked at small w’s, with an average W � 124. However, for
the cell-cycle network, the distribution is peaked at very large
numbers (W � 743), indicating significant convergence of tra-
jectories. The probability for a random network to have a W �
743 is 0.25%.

Network Perturbations. We see that the cell-cycle network has two
distinct dynamic properties compared with random networks: it
has a super fixed point and it has a converging pathway. What
effects would perturbations of the network have on these
properties? We perturbed a network by deleting an interaction
arrow, adding a green or red arrow between nodes that are not
linked by an arrow, or switch a green arrow to red and vice versa.
The relative change in the size B of the basin of attraction for the
biggest attractor, 
B�B were then measured as a result of the
perturbation. The distributions of 
B�B are plotted in Fig. 4 for
each kind of perturbation, respectively, along with those ob-
tained from the ensemble of random networks. We observe that

Fig. 4. The histogram of the relative changes of the size of the basin of attraction for the biggest fixed point with respect to network perturbations. Shown
are 34 line deletions (A), 174 line additions (B); 29 red–green switchings (C); and the average of A–C (D). One thousand random networks were used to generate
statistics.

Fig. 3. Comparison with random networks. (A) Attractor size distribution of random networks. (B) w-value distributions for the cell-cycle network and for
random networks. Ten thousand random networks were used to generate the statistics. (C) Schematic illustration of the definition of wn. The number next to
an arrow indicates the total traffic through the arrow. The number next to a node is the wn of the node.
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only a very small fraction of perturbations will eliminate the fixed
point completely (
B�B � 1). For most perturbations, the relative
changes of the basin size are small. A similar behavior in the changes
of quantity W as results of the perturbations was also seen.
Interestingly, this high ‘‘homeostatic stability’’ (13) is also evident in
the ensemble of random networks of the same size (Fig. 4). In fact,
we found that for random networks with the dynamic rule of Eq.
1 the homeostatic stability increases monotonically with the average
number of arrows per node k (Y.L. and C.T., unpublished work),
which is very different from the random Boolean network where a
‘‘chaotic’’ phase with low homeostatic stability is seen for k � kc
(13). Recent studies suggest that either a scale-free Boolean net-
work (15) or a genetic network with minimal frustration (16) would
also lead to a more stable phase.

To examine the effects of these perturbations on the biological
pathway itself, for each perturbed cell-cycle network we start at
the START state and follow its time evolution. We found that
under perturbation a significant fraction of the trajectories reach
the G1 stationary state and the cell-cycle sequence is by far the
most probable trajectory (Fig. 5).

Other Dynamical Rules. We found that the results are insensitive to
the values of the weights ag and ar in Eq. 1 and to the protein
lifetime td, as long as �ar � ag and td � 0. For example, with ar
� �10, ag � 1, and td � 4, there exist the same seven fixed points.
The G1 fixed point attracts 90% of all protein states and W � 907.
The network is somewhat more robust against perturbation (see
supporting information). Preliminary results with differential
equations replacing the simple discrete dynamic rule support the
overall conclusions (unpublished data).

Other Checkpoints. We also studied the cases in which one of the
other checkpoints, instead of the ‘‘cell size,’’ will act as the
stop–go signal. We found that, in all cases, there exists a big fixed
point that corresponds to the biological state waiting at the
checkpoint and the biopathway is a converging trajectory. The
studies were done on the full network (Fig. 1 A), keeping only
one checkpoint at a time. The basin size B of the big fixed point
and the convergence measure W of the biopathway for each
checkpoint are, respectively, B � 99.4% and W � 4,257 (InterS),
B � 89.8% and W � 3,821 (Spindle Assembly), B � 99.8% and
W � 4,925 (DNA Damage). For comparison, the corresponding
values for the Cell-Size checkpoint with the full network are B �
90.8% and W � 6,757 (see supporting information).

Discussion
We have demonstrated that the yeast cell-cycle network is robustly
designed. The biological states at the checkpoints are big attractors
and the biopathway is an attracting trajectory. These robust dy-
namical properties are also seen in the life cycle network of the
budding yeast (unpublished data), suggesting that they may be
common features of regulatory networks. The cell-cycle network is
rather stable against perturbations. Note that the network we
studied (Fig. 1A) is only a skeleton of a larger cell-cycle network
with many ‘‘redundant’’ components and interactions (e.g., any
member of the G1 cyclins can, to a large extend, perform the
functions of other members). Thus, we expect the complete net-
work to be even more stable against perturbations.

The idea that aspects of biological systems can be modeled as
dynamic systems and biological states can be interpreted as attrac-

tors has a long history, with examples in neural networks (17, 18),
immune systems (19, 20), genetic networks (21, 13), cell regulatory
network (22), and ecosystems (23). Our study on an actual yeast
cellular network lends support to this idea. Furthermore, our results
suggest that not only do biological states correspond to big fixed
points but the biological pathways are also robust.

Functional robustness has been found in other biological net-
works, e.g., in the chemotaxis of E. coli (in the response to external
stimuli) (24) and in the gene network setting up the segment
polarity in insects development (with respect to parameter changes)
(25, 26). It has also been found at the single molecular level, in the
mutational and thermodynamic stability of proteins (27). In some
sense, biological systems have to be robust to function in complex
(and very noisy) environments. More robust could also mean more
evolvable, and thus more likely to survive; a robust ‘‘module’’ is
easier to be modified, adapted, added-on, and combined with
others for new functions and new environments (28). Indeed,
robustness may provide us with a handle to understand the pro-
found driving force of evolution.

We thank Hamid Bolouri, Terry Hwa, Stuart Kauffman, Hao Li,
Albert Libchaber, Leihan Tang, and Saeed Tavazioe for helpful discus-
sions. The networks and dynamic trajectories are drawn with PAJEK
(http:��vlado.fmf.uni-lj.si�pub�networks�pajek). This work was partly
supported by the National Key Basic Research Project of China (No.
2003CB715900). T.L. and Y.L. acknowledge the support from the Jun
Zheng foundation.

1. Albert, R., Jeong, H. & Barabási, A.-L. (2000) Nature 406, 378–382.
2. Jeong, H., Tombor, B., Albert, R., Oltval, Z. N. & Barabási, A.-L. (2000) Nature

407, 651–654.
3. Jeong, H., Mason, S., Barabási, A.-L. & Oltvai, Z. N. (2001) Nature 411, 41–42.
4. Maslov, S. & Sneppen, K. (2002) Science 296, 910–913.
5. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D. & Alon, U.

(2002) Science 298, 824–827.

6. Murray, A. & Hunt, T. (1993) The Cell Cycle (Oxford Univ. Press, New
York).

7. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen,
M. B., Brown, P. O., Botstein, D. & Futcher, B. (1998) Mol. Biol. Cell 9,
3273–3297.

8. Chen, K., Csikasz-Nagy, A., Gyorffy, B., Val, J., Novak, B. & Tyson, J. J. (2000)
Mol. Biol. Cell 11, 369–391.

Fig. 5. Trajectories of the perturbed cell-cycle network starting from the
START. The trajectories from each kind of perturbations (34 from arrow
deletions, 174 from arrow additions, and 29 from red–green switchings) are
first superimposed on top of each other to form three groups. The three
groups are then superimposed on top of each other with equal weights. The
width of an arrow and the size of a node are proportional to the logarithm of
the number of shared trajectories. The biological pathway is colored blue. The
percentages of the perturbed networks that still evolve to the G1 state from
START are 41.2%, 57.4%, and 64.7% for arrow-deletion, arrow addition, and
color-switching, respectively.

Li et al. PNAS � April 6, 2004 � vol. 101 � no. 14 � 4785

CE
LL

BI
O

LO
G

Y
BI

O
PH

YS
IC

S

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

S
ep

te
m

be
r 

20
, 2

02
0 



9. Tyson, J. J., Chen, K. & Novak, B. (2001) Nat. Rev. Mol. Cell Biol. 2, 908–916.
10. Wolynes, P. G., Onuchic, J. N. & Thirumalai, D. (1995) Science 267, 1619–1620.
11. Onuchic, J. N., Luthey-Schulten, Z. & Wolynes, P. G. (1997) Annu. Rev. Phys.

Chem. 48, 545–600.
12. Dill, K. A. & Chan, H. S. (1997) Nat. Struct. Biol. 4, 10–19.
13. Kauffman, S. A. (1993) The Origins of Order (Oxford Univ. Press, New York).
14. Aldana-Gonzalez, M., Coppersmith, S. & Kadanoff, L. P. (2003) in Perspectives

and Problems in Nonlinear Science, eds. Kaplan, E., Marsden, J. E. & Sreeniva-
san, K. R. (Springer, New York), pp 23–89.

15. Aldana, M. (2003) Physica D 185, 45–66.
16. Sasai, M. & Wolynes, P. G. (2003) Proc. Natl. Acad. Sci. USA 100, 2374–2379.
17. McCulloch, W. S. & Pitts, W. (1943) Bull. Math. Biophys. 5, 99–115.

18. Hopfield, J. J. (1982) Proc. Natl. Acad. Sci. USA 79, 2554–2558.
19. Jerne, N. K. (1974) Ann. Immunol. 125C, 373–389.
20. Parisi, G. (1990) Proc. Natl. Acad. Sci. USA 87, 429–433.
21. Kauffman, S. A. (1969) J. Theor. Biol. 22, 437–467.
22. Huang, S. & Ingber, D. E. (2000) Exp. Cell Res. 261, 91–103.
23. May, R. M. (1974) Science 186, 645–647.
24. Alon, U., Surette, M. G., Barkai, N. & Leibler, S. (1999) Nature 397, 168–171.
25. von Dassow, G., Meir, E., Munro, E. M. & Odell, G. M. (2000) Nature 406,

189–192.
26. Albert, R. & Othmer, H. G. (2003) J. Theor. Biol. 223, 1–18.
27. Li, H., Helling, R., Tang, C. & Wingreen, N. (1996) Science 273, 666–669.
28. Kirschner, M. & Gerhart, J. (1998) Proc. Natl. Acad. Sci. USA 95, 8420–8427.

4786 � www.pnas.org�cgi�doi�10.1073�pnas.0305937101 Li et al.

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

S
ep

te
m

be
r 

20
, 2

02
0 


