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We analyze the global structure of the worldwide air transporta-
tion network, a critical infrastructure with an enormous impact on
local, national, and international economies. We find that the
worldwide air transportation network is a scale-free small-world
network. In contrast to the prediction of scale-free network mod-
els, however, we find that the most connected cities are not
necessarily the most central, resulting in anomalous values of the
centrality. We demonstrate that these anomalies arise because of
the multicommunity structure of the network. We identify the
communities in the air transportation network and show that the
community structure cannot be explained solely based on geo-
graphical constraints and that geopolitical considerations have to
be taken into account. We identify each city’s global role based on
its pattern of intercommunity and intracommunity connections,
which enables us to obtain scale-specific representations of the
network.

complex networks � betweenness centrality � critical infrastructures

L ike other critical infrastructures, the air transportation net-
work has enormous impact on local, national, and interna-

tional economies. It is thus natural that airports and national
airline companies are often times associated with the image a
country or region wants to project (1–4).

The air transportation system is also responsible, indirectly, for
the propagation of diseases such as influenza and, recently, severe
acute respiratory syndrome (SARS). The air transportation net-
work thus plays for certain diseases a role that is analogous to that
of the web of human sexual contacts (5) for the propagation of
AIDS and other sexually transmitted infections (6, 7).

The worldwide air transportation network is responsible for the
mobility of millions of people every day. Almost 700 million
passengers fly each year, maintaining the air transportation system
ever so close to the brink of failure. For example, U.S. and foreign
airlines schedule �2,700 daily flights in and out of O’Hare Inter-
national Airport (Chicago) alone, �10% of the total commercial
flights in the continental U.S. and more than the airport could
handle even during a perfect ‘‘blue-sky’’ day. Low clouds, for
example, can lower landing rates at O’Hare from 100 per hour to
just 72 per hour, resulting in delays and flight cancellations across
the country. The failures and inefficiencies of the air transportation
system have large economic costs; flight delays cost European
countries 150 billion to 200 billion Euro in 1999 alone (8).

These facts prompt several questions. What has led the system to
this point? Why can’t we design a better system? To answer these
questions, it is crucial to characterize the structure of the worldwide
air transportation network and the mechanisms responsible for its
evolution. The solution to this problem is, however, far from simple.
The structure of the air transportation network is mostly deter-
mined by the concurrent actions of airline companies, both private
and national, that try, in principle, to maximize their immediate
profit. However, the structure of the network is also the outcome
of numerous historical ‘‘accidents’’ arising from geographical, po-
litical, and economic factors.

Much research has been conducted on the definition of models
and algorithms that enable one to solve problems of optimal
network design (9, 10). However, a worldwide, ‘‘system’’ level
analysis of the structure of the air transportation network is still
lacking. However, just as one cannot fully understand the complex
dynamics of ecosystems by looking at simple food chains (11) or the
complex behavior in cells by studying isolated biochemical pathways
(12, 13), one cannot fully understand the dynamics of the air
transportation system without a ‘‘holistic’’ perspective. Modern
‘‘network analysis’’ (14–18) provides an ideal framework within
which to pursue such a study.

We analyze here the worldwide air transportation network. We
build a network of 3,883 locales, villages, towns, and cities with at
least one airport and establish links between pairs of locales that are
connected by nonstop passenger flights. We find that the worldwide
air transportation network is a small-world network (19) for which
(i) the number of nonstop connections from a given city and (ii) the
number of shortest paths going through a given city have distribu-
tions that are scale-free. In contrast to the prediction of scale-free
network models, we find that the most-connected cities are not
necessarily the most ‘‘central,’’ that is, the cities through which most
shortest paths go. We show that this surprising result can be
explained by the existence of several distinct ‘‘communities’’ within
the air transportation network. We identify these communities by
using algorithms recently developed for the study of complex
networks and show that the structure of the communities cannot be
explained solely based on geographical constraints and that geo-
political considerations also must be taken into account. The
existence of communities leads us to the definition of each city’s
global role, based on its pattern of intercommunity and intracom-
munity connections.

Data
Many measures, including total number of passengers, number of
flights, or amount of cargo, quantifying the importance of the world
airports were compiled and publicized (20). We study here the OAG
MAX database (http:��oagdata.com�solutions�max.aspx), which
comprises flight schedule data of �800 of the world’s airlines for the
period November 1, 2000, to October 31, 2001. This database is
compiled by OAG Worldwide (Downers Grove, IL), and includes
all scheduled flights and scheduled charter flights, both for big
aircrafts (air carriers) and small aircrafts (air taxis).

We focused our analysis on a network of cities, not of airports;
for example, Newark Liberty International Airport, John F.
Kennedy International Airport, and LaGuardia Airport are all
assigned to New York City. We further restricted our analysis to
passenger flights operating in the time period November 1, 2000, to
November 7, 2000. Even though these data are �4 years old, the
resulting worldwide airport network is virtually indistinguishable
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from the network one would obtain if using data collected today.
The reason is that air traffic patterns are strongly correlated with (i)
socioeconomic factors, such as population density and economic
development; and (ii) geopolitical factors, such as the distribution
of the continents over the surface of the Earth and the locations of
borders between states (21). Clearly, the time scales associated to
changes in these factors are much longer than the lag in the data we
analyzed here.

During the period considered, there were 531,574 unique non-
stop passenger flights, or flight segments, operating between 3,883
distinct cities. We identified 27,051 distinct city pairs having nonstop
connections. The fact that the database is highly redundant, that is,
that most connections between pairs of cities are represented by
more than one flight, adds reliability to our analysis. Specifically, the
fact that unscheduled flights are not considered does not mean, in
general, that the corresponding link between a certain pair of cities
is missing in the network, because analogous scheduled flights may
still operate between them. Similarly, even if some airlines have
canceled their flights between a pair of cities since November 2000,
it is highly unlikely that all of them have.

We created the corresponding adjacency matrix for this network,
which turns out to be almost symmetrical. The very minor asym-
metry stems from the fact that a small number of flights follow a
‘‘circular’’ pattern, i.e., a flight might go from A to B to C and then
back to A. To simplify the analysis, we symmetrized the adjacency
matrix.

Further, we built regional networks for different geographic
regions (Table 1). Specifically, we generated 21 regional networks
at different aggregation levels. At the highest-aggregation level, we
generated six networks; one each for Africa, Asia and Middle East,
Europe, Latin America, North America, and Oceania. For each of
these regions, except for North America and Oceania, we generated
between two and five subnetworks. For instance, the Asia and
Middle East network was further subdivided into South Asia,
Central Asia, Southeast Asia, Northeast Asia, and Middle East.

Large-Scale Structure of the Air Transportation Network
A ubiquitous characteristic of complex networks is the so-called
‘‘small-world’’ property (22). In a small-world network, pairs of
nodes are connected by short paths as one expects for a random
graph (23). Crucially, nodes in small-world networks also have a
high degree of cliquishness, as one finds in low-dimensional lattices
but not in random graphs.

In the air transportation network, the average shortest path
length d is the average minimum number of flights that one needs
to take to get from any city to any other city in the world. We found
that for the 719 cities in the Asia and Middle East network, d � 3.5
and that the average shortest path length between the 3,663 cities
in the giant component of the worldwide network is only approx-
imately one step greater, d � 4.4. Actually, most pairs of cities
(56%) are connected by four steps or less. More generally, we found
that d grows logarithmically with the number S of cities in the
network, d � log S. This behavior is consistent with both random
graphs and small-world networks but not with low-dimensional
networks, for which d grows more rapidly with S.

Still, some pairs of cities are considerably further away from each
other than the average. The farthest cities in the network are Mount
Pleasant in the Falkland Islands and Wasu, Papua New Guinea: To
get from one city to the other, one needs to take 15 different flights.
From Mount Pleasant, one can fly to Punta Arenas, Chile, and from
there fly to some hubs in Latin America. At the other end of the
path, from Wasu one needs to fly to Port Moresby (Papua New
Guinea), which requires a unique sequence of eight flights. In the
center of the path, between Punta Arenas and Port Moresby, six
different flights are needed. In contrast to what happens the ends
of the path, in the central region of the path there are hundreds of
different flight combinations, all of them connecting Punta Arenas
and Port Moresby in six steps.

The clustering coefficient C, which quantifies the local cliquish-
ness of a network, is defined as the probability that two cities that
are directly connected to a third city also are directly connected to
each other. We find that C is typically larger for the air transpor-
tation network than for a random graph and that it increases with
size. These results are consistent with the expectations for a
small-world network but not with those for a random graph. For the
worldwide network, we find that C � 0.62, whereas its randomiza-
tion yields C � 0.049. Therefore, we conclude that the air trans-
portation network is, as expected, a small-world network (19).

Another fundamental aspect in which real-world networks often
deviate from the random graphs typically considered in mathemat-
ical analysis (23) is the degree distribution, that is, the distribution
of the number of links of the nodes (15, 19, 24). In binomial random
graphs, all nodes have similar degrees, whereas many real-world
networks have some nodes that are significantly more connected
than others. Specifically, many complex networks, termed ‘‘scale-
free,’’ have degree distributions that decay as a power law. A
plausible mechanism for such a phenomenon is preferential attach-
ment (19, 24), that is, the tendency to connect preferentially to
nodes with already high degrees.

To gain greater insight into the structure and evolution of the air
transportation network, we calculated the degree distribution of the
cities. The degree of a city is the number of other cities to which it
is connected by a nonstop flight. In Fig. 1a, we show the cumulative
degree distribution¶ for the worldwide air transportation network.
The data suggest that P(� k) has a truncated power-law decaying
tail (19, 24)

P� � k� � k�� f�k�k��, [1]

where � � 1.0 	 0.1 is the power law exponent, f(u) is a
truncation function, and k� is a crossover value that depends on
the size of the network. The measured value of the exponent �
would imply that, as one increases the size of the network, the
average degree of the cities also is expected to increase (15).

The degree of a node is a source of information on its impor-
tance. However, the degree does not provide complete information
on the role of the node in the network. To start to address this issue,
we considered the ‘‘betweenness centrality’’ of the cities comprising
the worldwide air transportation network. The betweenness Bi of
city i is defined as the number of shortest paths connecting any
two cities that involve a transfer at city i (25–27). We define
the normalized betweenness as bi � Bi�
B�, where 
B� represents the
average betweenness for the network. We plot in Fig. 1b the
cumulative distribution P(� b) of the normalized betweenness for
the worldwide air transportation network. Our results suggest that
the distribution of betweennesses for the air transportation network
obeys the functional form

P� � b� � b�� g�b�b�� [2]

¶The cumulative degree distribution P(� k) gives the probability that a city has k or more
connections to other cities and is defined as P(� k) � ¥k��k

� p(k�), where p(k) is the
probability density function.

Table 1. Number of locations with airports by major
geographic region

Region No. of locations

Africa 364
Asia and Middle East 719
Europe 691
Latin America 523
North America 1,064
Oceania 522
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where � � 0.9 	 0.1 is the power law exponent, g(u) is a
truncation function, and b� is a crossover value that depends on
the size of the network.

A question prompted by the previous results regarding the
degree and the centrality of cities is: ‘‘Are the most connected cities
also the most central?’’ To answer this question, we analyzed first the
network obtained by randomizing the worldwide air transportation
network (Fig. 1b). We found that the distribution of betweennesses
still decays as a power law but, in this case, with a much larger
exponent value, � � 1.5 	 0.1. This finding indicates the existence
of anomalously large betweenness centralities in the air transpor-
tation network.

For the randomized network, the degree of a node and its
betweenness centrality are strongly correlated; i.e., highly con-
nected nodes are also the most central (Fig. 2a). In contrast, for the
worldwide air transportation network, it turns out that there are
cities that are not hubs, i.e., have small degrees but that nonetheless
have very large betweennesses (Fig. 2a).

To better illustrate this finding, we plotted the 25 most connected
cities and contrasted such a plot with another of the 25 most central
cities according to their betweenness (Fig. 2 b and c). Although the
most connected cities are located mostly in Western Europe and
North America, the most central cities are distributed uniformly
across all of the continents. Significantly, each continent has at least

one central city, which is typically highly connected when compared
with other cities in the continent, i.e., Johannesburg in Africa or
Buenos Aires and São Paulo, Brazil, in South America. Interest-
ingly, besides these cities with relatively large degree, there are
others, such as Anchorage (AK) and Port Moresby (Papua New
Guinea), that, despite having small degrees, are among the most
central in the network (Table 2).

Degree-Betweenness Anomalies and Multicommunity
Networks
Nodes with small degree and large centrality can be regarded as
anomalies. Other complex networks that have been described in the

Fig. 1. Degree and betweenness distributions of the worldwide air transpor-
tationnetwork. (a)Cumulativedegreedistributionplotted indouble-logarithmic
scale. The degree k is scaled by the average degree z of the network. The
distribution displays a truncated power-law behavior with exponent � � 1.0 	
0.1. (b) Cumulative distribution of normalized betweennesses plotted in double-
logarithmic scale. The distribution displays a truncated power-law behavior with
exponent � � 0.9 	 0.1. For a randomized network with exactly the same degree
distribution as the original air transportation network, the betweenness distri-
bution decays with an exponent � � 1.5 	 0.1. A comparison of the two cases
clearly shows the existence of an excessive number of large betweenness values
in the air transportation network. Fig. 2. Most-connected versus most-central cities in the worldwide air

transportation network. (a) Betweenness as a function of the degree for the
cities in the worldwide air transportation network (circles). For the random-
ized network, the betweenness is well described as a quadratic function of the
degree (dashed line) with 95% of all data falling inside the gray region. In
contrast to the strong correlation between degree and betweenness found
for randomized networks, the air transportation network comprises many
cities that are highly connected but have small betweenness and, conversely,
many cities with small degree and large betweenness. We define a blue region
containing the 25 most central cities in the world and a yellow region con-
taining the 25 most connected cities. Surprisingly, we find there are only a few
cities with large betweenness and degree (green region, which is the inter-
section of the blue and yellow regions). (b) The 25 most connected cities in the
world. (c) The 25 most central cities in the world.
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literature, like the Internet (28), do not display such a behavior, and
nodes with the highest degree are also those with the highest
betweenness (29). It is, in principle, easy to construct a network in
which a node has small degree and large centrality; think, for
example, of a network formed by two communities that are
connected to one another through a single node with only two links.
The relevant question is, however, ‘‘what general and plausible

mechanism would give rise to scale-free networks with the obtained
anomalous distribution of betweenness centralities?’’

To answer this question, it is useful to consider a region such
as Alaska. Alaska is a sparsely populated, isolated region with
a disproportionately large, for its population size, number of
airports. Most Alaskan airports have connections only to other
Alaskan airports. This fact makes sense geographically. How-
ever, distance-wise, it also would make sense for some Alaskan
airports to be connected to airports in Canada’s Northern
Territories. These connections are, however, absent. Instead,
a few Alaskan airports, singularly Anchorage, are connected to
the continental U.S. The reason is clear: the Alaskan popu-
lation needs to be connected to the political centers, which are
located in the continental U.S., whereas there are political
constraints making it difficult to have connections to cities in
Canada, even to ones that are close geographically (21). It is
now obvious why Anchorage’s centrality is so large. Indeed,
the existence of nodes with anomalous centrality is related to
the existence of regions with a high density of airports but few
connections to the outside. The degree-betweenness anomaly
is therefore ultimately related to the existence of communities
in the network.

The unexpected finding of central nodes with low degree is a
very important one because central nodes play a key role in
phenomena such as diffusion and congestion (30) and in the
cohesiveness of complex networks (31). Therefore, our finding of
anomalous centralities points to the need to (i) identify the
communities in the air transportation network and (ii) establish
new ways to characterize the role of each city based on its pattern
of intracommunity and intercommunity connections and not
merely on its degree.

Community Structure. To identify communities in the air trans-
portation network, we used the definition of modularity intro-
duced in refs. 32 and 33. The modularity of a given partition of
the nodes into groups is maximum when nodes that are densely
connected among them are grouped together and separated
from the other nodes in the network. To find the partition that
maximizes the modularity, we used simulated annealing (34–37).
We display in Fig. 3 the communities identified by our algorithm

Table 2. The 25 most central cities in the worldwide air
transportation network

Rank City b b�bran Degree

1 Paris 58.8 1.2 250
2 Anchorage* 55.2 16.7 39
3 London 54.7 1.2 242
4 Singapore* 47.5 4.3 92
5 New York 47.2 1.6 179
6 Los Angeles 44.8 2.3 133
7 Port Moresby* 43.4 13.6 38
8 Frankfurt 41.5 0.9 237
9 Tokyo 39.1 2.7 111

10 Moscow 34.5 1.1 186
11 Seattle* 34.3 3.3 89
12 Hong Kong* 30.8 2.6 98
13 Chicago 28.8 1.0 184
14 Toronto 27.1 1.8 116
15 Buenos Aires* 26.9 3.2 76
16 São Paulo* 26.5 2.8 82
17 Amsterdam 25.9 0.8 192
18 Melbourne* 25.5 4.5 58
19 Johannesburg* 25.4 2.6 84
20 Manila* 24.4 3.5 67
21 Seoul* 24.3 2.1 95
22 Sydney* 23.1 3.2 70
23 Bangkok* 22.9 1.8 102
24 Honolulu* 21.1 4.4 51
25 Miami* 20.1 1.4 110

Cities are ordered according to their normalized betweenness. We also
show the ratio of the actual betweenness of the cities to the betweenness that
they have after randomizing the network.
*These cities are not among the 25 most connected.

Fig. 3. Communities in the giant component of the worldwide air transportation network. Each node represents a location, and each color corresponds to a
community.
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in the worldwide air transportation network.�
As we surmised, both Alaska and Papua New Guinea form

separate communities.** This fact explains the large between-
ness centrality of Anchorage and Port Moresby, because they
provide the main links to the outside world for the other cities
in their communities.

Another significant result is that even though geographical
distance plays a clear role in the definition of the communities,
the composition of some of the communities cannot be explained
by purely geographical considerations. For example, the com-
munity that contains most cities in Europe also contains most
airports in Asian Russia. Similarly, Chinese and Japanese cities
are mostly grouped with cities in the other countries in Southeast
Asia, but India is mostly grouped with the Arabic Peninsula
countries and with countries in Northeastern Africa. These facts
are consistent with the important role of political factors in
determining community structure (21).

Global Role of Cities. We characterized the role of each city in the
air transportation network based on its pattern of intracommu-
nity and intercommunity connections. We first distinguished
nodes that play the role of hubs in their communities from those
that are nonhubs. Note that cities like Anchorage are hubs in
their communities, but they are not hubs if one considers all of

the nodes in the network. Thus, we define the within-community
degree of a node. If �i is the number of links of node i to other
nodes in its community si, �� si

is the average of � over all of the
nodes in si, and ��si

is the standard deviation of � in si, then

zi �
�i � �� si

��si

, [3]

is the so-called z-score. The within-community degree z-score
measures how ‘‘well-connected’’ node i is to other nodes in the
community.

We then distinguished nodes based on their connections to nodes
in communities other than their own. For example, two nodes with
the same z-score will play different roles if one of them is connected
to several nodes in other communities and the other is not. We
define the participation coefficient Pi of node i as

Pi � 1 � �
s�1

NM��is

ki
�2

, [4]

where �is is the number of links of node i to nodes in community
s, and ki is the total degree of node i. The participation coefficient
of a node is therefore close to one if its links are uniformly
distributed among all of the communities and zero if all its links are
within its own community.

We hypothesized that the role of a node can be determined, to
a great extent, by its within-module degree and its participation
coefficient (36, 37). We defined heuristically seven different ‘‘uni-
versal roles,’’ each one corresponding to a different region in the zP
phase-space. According to the within-module degree, we classified
nodes with z � 2.5 as module hubs and nodes z  2.5 as nonhubs.
Both hub and nonhub nodes are then more finely characterized by
using the values of the participation coefficient (36, 37).

�We do not know the geographical coordinates of �10% of the 3,663 cities in the giant
component of the worldwide air transportation network. Those cities are not plotted in
the map. Also, some small cities may be misplaced because of duplications in the three-
letter code of the corresponding airport.

**Alaska and Papua New Guinea are small communities compared with most of the others,
which confirms the idea that these are very well defined communities; otherwise, they
would be incorporated in a larger community. This fact is particularly important taking
into consideration that the community identification algorithm does not take into
account the betweenness of the nodes at all.

Fig. 4. Toward a scale-specific representation of the worldwide air transportation network. (a) Each point in the zP phase-space corresponds to a city, and
different colors indicate different roles. Most cities are classified as ultraperipheral (black) or peripheral (red) nodes. A small number of nonhub nodes play the
role of connectors (green). We find approximately equal fractions of provincial (yellow) and connector (brown) hubs. (b) Same as a but for a randomization of
the air transportation network. The absence of communities manifests itself in that most hubs become kinless hubs (gray) and in the appearance of kinless
nonhubs (blue). (c) Nonhub connectors (green), provincial hubs (yellow), and connector hubs (brown) in the worldwide air transportation network.
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We divided nonhub nodes into four different roles as follows:
(R1) ‘‘ultraperipheral nodes,’’ i.e., nodes with all their links within
their module (P 	 0.05); (R2) ‘‘peripheral nodes,’’ i.e., nodes with
most links within their module (0.05  P 	 0.62); (R3) ‘‘nonhub
connector nodes,’’ i.e., nodes with many links to other modules
(0.62  P 	 0.80); and (R4) ‘‘nonhub kinless nodes,’’ i.e., nodes with
links homogeneously distributed among all modules (P � 0.80).

We divided hub nodes into three different roles as follows: (R5)
‘‘provincial hubs,’’ i.e., hub nodes with the vast majority of links
within their module (P 	 0.30); (R6) ‘‘connector hubs,’’ i.e., hubs
with many links to most of the other modules (0.30  P 	 0.75); and
(R7) ‘‘kinless hubs,’’ i.e., hubs with links homogeneously distributed
among all modules (P � 0.75).

For each city in the worldwide air transportation network, we
calculated its within-community degree zi and its participation
coefficient Pi. Then, we assigned each city a role according to the
definitions above (Fig. 4 a and c). Significantly, 95.4% of the cities
in the worldwide air transportation network are classified as either
peripheral or ultra-peripheral. Additionally, there is a small fraction
of nonhub connectors (0.5%). These results suggest that cities that
are not hubs in their respective communities rarely have links to
many other communities in the air transportation network. This
situation is in stark contrast to what happens in some biological
networks, in which nonhub connectors seem to be relatively fre-
quent and play an important role (36).

The remaining 4.1% of the nodes are hubs. We found approx-
imately equal fractions of provincial and connector hubs. The
former include cities that, for historical, political, or geographical
reasons, are comparatively not well-connected to other communi-
ties. Examples are Denver, Philadelphia, and Detroit in North
America; Stuttgart, Copenhagen, Istanbul (Turkey), and Barcelona
in the community formed by Europe, North Africa, and the former
Soviet Union; Adelaide (Australia) and Christchurch (New Zea-
land) in Oceania; Brası́lia (Brazil) in South America; Fairbanks and
Juneau in Alaska; and the already-discussed case of Port Moresby.
Connector hubs include the most recognizable airport hubs in the
world: Chicago, New York, Los Angeles, and Mexico City in North
America; Frankfurt, London, Paris, and Rome in Europe; Beijing,
Tokyo, and Seoul in the Southeastern Asian community; Delhi,
Abu Dhabi (United Arab Emirates), and Kuwait in the community
comprising India, the Arabic Peninsula, and Northeastern Africa;
Buenos Aires, Santiago, and São Paulo in South America; Mel-
bourne, Auckland, and Sydney in Oceania; and Anchorage in
Alaska.

The fractions of cities with each role in the worldwide air
transportation network contrast with the corresponding fractions in
a randomization of the network (Fig. 4b). In this case, the com-
munity identification algorithm still yields certain communities, but
the network lacks ‘‘real’’ community structure. The identification of
roles enables one to realize that these communities are somehow

artificial. Indeed, many cities are either kinless hubs or kinless
nonhubs because of the absence of a real community structure, and
the network contains essentially no provincial or connector hubs.

Discussion
We carried out a ‘‘systems’’ analysis of the structure of the world-
wide air transportation network. The study enables us to unveil a
number of significant results. The worldwide air transportation
network is a small-world network in which (i) the number of
nonstop connections from a given city and (ii) the number of
shortest paths going through a given city have distributions that are
scale-free. Surprisingly, the nodes with more connections are not
always the most central in the network. We hypothesize that the
origin of such a behavior is the multicommunity structure of the
network. We find the communities in the network and demonstrate
that their structure can only be understood in terms of both
geographical and political considerations.

Our analysis of the community structure of the air transportation
network is important for two additional reasons. First, it allows us
to identify the most efficient ways to engineer the structure of the
network. Specifically, having identified the communities, one can
identify which ones are poorly connected and the ways to minimize
that problem. Second, cities that connect different communities
play a disproportionate role in important dynamic processes such as
the propagation of infections such as severe acute respiratory
syndrome. As we described, finding the communities is the first step
toward identifying these cities.

The existence of communities and the understanding that dif-
ferent cities may have very different impacts on the global behavior
of the air transportation system call for the definition of the role of
each city. We addressed this issue by classifying cities into seven
roles, according to their patterns of intercommunity and intracom-
munity connections. We found that most of the nodes (95%) are
peripheral; that is, the vast majority of their connections are within
their own communities. We also found that nodes that connect
different communities are typically hubs within their own commu-
nity, although not necessarily global hubs. This finding is in stark
contrast with the behavior observed in certain biological networks,
in which nonhub connectors are more frequent (36).

The fact that different networks seem to be formed by nodes with
network-specific roles points to the more general question of what
evolutionary constraints and pressures determine the topology of
complex networks and how the presence or absence of specific roles
affects the performance of these networks.
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