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Consider an underdetermined system of linear equations y � Ax
with known y and d � n matrix A. We seek the nonnegative x with
the fewest nonzeros satisfying y � Ax. In general, this problem is
NP-hard. However, for many matrices A there is a threshold
phenomenon: if the sparsest solution is sufficiently sparse, it can be
found by linear programming. We explain this by the theory of
convex polytopes. Let aj denote the jth column of A, 1 < j � n, let
a0 � 0 and P denote the convex hull of the aj. We say the polytope
P is outwardly k-neighborly if every subset of k vertices not
including 0 spans a face of P. We show that outward k-neighbor-
liness is equivalent to the statement that, whenever y � Ax has a
nonnegative solution with at most k nonzeros, it is the nonnega-
tive solution to y � Ax having minimal sum. We also consider weak
neighborliness, where the overwhelming majority of k-sets of ajs
not containing 0 span a face of P. This implies that most nonnega-
tive vectors x with k nonzeros are uniquely recoverable from y �
Ax by linear programming. Numerous corollaries follow by invok-
ing neighborliness results. For example, for most large n by 2n
underdetermined systems having a solution with fewer nonzeros
than roughly half the number of equations, the sparsest solution
can be found by linear programming.

neighborly polytopes � cyclic polytopes � combinatorial optimization �
convex hull of Gaussian samples � positivity constraints in ill-posed
problems

1. Introduction

Consider an underdetermined system of linear equations y �
Ax, where y � Rd, x � Rn, A is a d � n matrix, d � n, and

y is considered known but x is unknown. In this article only
nonnegative solutions x � 0 are of interest. Enthusiasts of
parsimony seek the sparsest solution, the one with fewest
nonzeros. Formally, they consider the optimization problem

�NP� min �x�0 subject to y � Ax , x � 0.

Here the 0-norm �x�0 counts the number of nonzeros. Because
of the extreme nonconvexity of the zero-norm, (NP) is NP-hard
in general. In this article, we consider the linear program

�LP� min 1�x subject to y � Ax , x � 0.

We will show that for many matrices A, whenever the solution
to (NP) is sufficiently sparse, it is also the unique solution of
(LP). As a general label, we call this phenomenon NP�LP
equivalence.

We develop an understanding of this equivalence phenome-
non by using ideas from the theory of convex polytopes; the
books of Grünbaum (1) and Ziegler (2) are useful starting points.
Throughout the article, we study a specific polytope P, definable
in several equivalent ways. Let Tn�1 denote the standard simplex
in Rn, i.e., the convex hull of the unit basis vectors ei. Let T 0

n

denote the solid simplex, i.e., the convex hull of T n�1 and the
origin. We think of T n�1 as the outward part of T 0

n, i.e., the part
one would see looking from ‘‘outside.’’

We focus attention in this article on the convex polytope P �
AT 0

n � Rd. P also has a representation as the convex hull of a
certain point set A � Rd we refer to frequently. Specifically, let

A consist of the columns aj, j � 1, . . . , n of A, possibly together
with origin a0 � 0; include the origin if it does not already belong
to the convex hull of the {aj}j�1

n . For later use, set N � #A. Thus,
N � n if 0 belongs to the convex hull of the {aj}j�1

n , otherwise N �
n � 1. Below, we use the notation T � T n�1 if N � n, and T �
T 0

n, if N � n � 1. Then also P � AT.
A general polytope Q is called k-neighborly if every set of k

vertices spans a face of Q. Thus, all combinations of vertices
generate faces. The standard simplex Tn�1 is the prototypical
neighborly object. The terminology and basic notions in neighbor-
liness were developed by Gale (3, 4); see also refs. 1, 2, and 5.

We modify this notion here, calling a polytope Q that contains
0 outwardly k-neighborly if all sets of k vertices not including the
origin 0 span a face. Roughly speaking, such a polytope behaves
as a neighborly one except perhaps at any faces reaching the
origin. Thus if Q is k-neighborly then it is also outwardly
k-neighborly, but the notions are distinct. In addition outward
k-neighborliness of AT 0

n implies neighborliness of AT n�1, the
outward part of AT 0

n. Of course, when 0 � AT n�1 neighborliness
and outwardly neighborliness of AT 0

n coincide. [Modification
of neighborliness to exclude consideration of certain subsets of
vertices has been useful previously; compare the notion of
central neighborliness of centrosymmetric polytopes, where ev-
ery k vertices not including an antipodal pair span a face; see ref.
6 for discussion and references.]

In Section 2 we connect outward neighborliness to the ques-
tion of NP�LP equivalence.

Theorem 1. Let A be a d � n matrix, d � n. These two properties
of A are equivalent:

Y The polytope P has N vertices and is outwardly k-neighborly.
Y Whenever y � Ax has a nonnegative solution, x0 having at most

k nonzeros, x0 is the unique solution to (LP).

Formalizing the notion of sparsity threshold of a matrix A, we see
that LP�NP equivalence holds up to a certain breakdown point;
namely, the largest value m such that every sparse vector with fewer
than m nonzeros is uniquely recovered by (LP). The highest value
of k for which a polytope besides the simplex can be k-neighborly
is d�2 (1, 3, 4). Hence if n 	 d, equivalence breakdown must occur
as soon as the number of nonzeros k � d�2 � 1.

1.1. Neighborly Polytopes. A polytope is called neighborly if it is
k-neighborly for every k � 1, . . . ,  d�2 . Many families of
neighborly polytopes are known. In Section 3, we use Theorem
1 and the existence of neighborly polytopes to give the following.

Corollary 1.1. Let d 	 2. For every n 	 d there is a d � n matrix A
such that NP�LP equivalence holds with breakdown point d�2 � 1.

When we have a matrix A with this property, and a particular
system of equations that must be solved, we can run (LP); if we
find that the output has fewer nonzeros than half the number of

Abbreviation: LP, linear program.

*To whom correspondence should be addressed. E-mail: donoho@stat.stanford.edu.

© 2005 by The National Academy of Sciences of the USA

9446–9451 � PNAS � July 5, 2005 � vol. 102 � no. 27 www.pnas.org�cgi�doi�10.1073�pnas.0502269102

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

M
ay

 1
1,

 2
02

1 



equations, we infer that we have the unique sparsest nonnegative
solution.

For such matrices, if it would be very valuable to solve (NP),
because the answer would be very sparse, we can solve it by
convex optimization. Conversely, it is exactly in the cases where
the answer to (NP) would not be very sparse that it might also
be very expensive to compute!

Examples of neighborly polytopes go back to Gale (3, 4) and
Motzkin (7); some of these are reviewed in Section 3. They have
interesting interpretations in terms of Fourier analysis and geom-
etry of polynomials, and correspond to interesting matrices A.
Section 3 shows how to apply them to get the above corollary and
to get two results about inference in the presence of badly incom-
plete data. The first concerns incomplete Fourier information:

Corollary 1.2. Let �(0) be a nonnegative measure supported on some
subset of the n known points 0 � t1 � � � � � tn � 2�. Let �̂k denote
the Fourier coefficient

�̂k � �
j

�
tj� exp
 ��1 �ktj� .

Suppose that yk � �̂k
(0) is observed (without error) for k � 1, . . . ,

m, 2m � n. If �(0) is supported on at most m points, the problem

min �
j

�
 t j� subject to yk � �̂k, k � 1, . . . , m ;

�
 t j� � 0, j � 1, . . . , n ,

has �(0) as its unique solution.
Superficially, this problem seems improperly posed, since we

have n unknowns, the mass of � at each of the n points tj, with
only 2m � n data �̂k to constrain them. Yet if the underlying
object �(0) is sparsely supported, it is uniquely recoverable, in
fact by convex optimization. This corollary was previously known
to us; it follows from a result in ref. 8. It also follows from recent
work by Fuchs (9).

A parallel result can be given for partial Laplace transformation.

Corollary 1.3. Let �(0) be a nonnegative measure supported on some
subset of the n known points, �� � �1 � � � � � �n � �. Let �̃k

denote the Laplace transform value

�̃k � �
j

�
�j� exp
k� j� .

Suppose that yk � �̃k
(0) is observed (without error) for k � 1, . . . ,

m, m � n. If �(0) is supported on at most m�2 points, the problem

min �
j

�
 t j� subject to yk � �̃k, k � 1, . . . , m ;

�
� j� � 0, j � 1, . . . , n

has �(0) as its unique solution.
This problem again seems improperly posed, since we have n

unknowns but only m � n (real) data. Yet if �(0) is sparsely
supported, it is uniquely recoverable, again by linear programming.

These corollaries are proved here by using the neighborliness
of polytopes based on certain partial Fourier and partial Vander-
monde matrices, respectively. They also follow from recent work
by Fuchs (9), who gave a direct proof of uniqueness. We find the
neighborliness connection is instructive; it makes available a
whole range of similar examples, provides knowledge about the
atypicality of such examples, and builds a bridge to a body of
distinguished literature, going back as far as Carathéodory
(10, 11).

1.2. Random Polytopes. When introducing the neighborliness
concept, Gale (3) suggested that ‘‘most’’ polytopes are neigh-
borly. Recently, we (12) studied neighborliness of random
polytopes, considering high-dimensional cases dn �  �n , n large.
We derived a function �N such that polytopes P with n Gaussian-
distributed vertices in Rd were roughly �N(d�n)�d-neighborly for
large n. Thus, if n � 2d, we found �N(d�n)  0.133; compare
Table 1. Applying our results gives the following.

Corollary 1.4. Fix 	 	 0. Let Ad,n denote a random d � n matrix with
columns drawn independently from a multivariate normal distri-
bution on Rd with nonsingular covariance matrix. Suppose d and
n are proportionally related by dn �  �n . Then, with overwhelming
probability for large n, Ad,n offers the property of LP�NP equiva-
lence up to breakdown point �(�N(�) � 	)d.

Line 1 of Table 1 gives results for different aspect ratios � �
d�n of the nonsquare matrix A. Thus if n � 10d, so the
corresponding system is underdetermined by a factor of 10, the
typical matrix A with Gaussian columns offers LP�NP equiva-
lence up to a breakdown point exceeding 0.06d. For the typical
A and for every problem instance y generated by a sparse vector
x with nonzeros �0.06 times the number of equations, (LP)
delivers the sparsest solution.

1.3. Weak Neighborliness and Weak Equivalence. The notion of
NP�LP equivalence developed in Theorem 1 demands, for a
given A, equivalence at all problem instances (y, A) generated by
any nonnegative sparse vector x0 with at most k nonzeros. A
weaker notion considers equivalence merely for most such
problem instances. This idea is developed in Section 4, where it
is shown that for matrices A where the corresponding point set
A is in general position NP�LP equivalence at a certain instance
y � Ax0 depends only on the support of x0 and not on the values
of x0 for its support. Hence, we define a measure on problem
instances by simply counting the fraction of support sets of size
k with a given property. We then meaningfully speak of a given
A offering NP�LP equivalence for most problem instances
having nonnegative sparse solutions with the most k nonzeros.

We can also define two weaker notions of classical [respec-
tively (resp.) outward] neighborliness, saying that the polytope P
is (k, 	)-weakly neighborly (resp. weakly outwardly neighborly)
if, among k-membered subsets of vertices (resp. those not
including 0), all except a fraction 	 span k � 1-faces of P. As it
turns out, if the points A are in general position, weak neigh-
borliness of P is the same thing as saying that P � AT has at least
(1 � 	) times as many (k � 1)-dimensional faces as T. Hence, the
notion of weak neighborliness is really about numbers of faces.
We say that a face is zerofree if 0 does not occur as a vertex.

Theorem 2. Let A be a d � n matrix, d � n with point set A in general
position. For 1 � k � d � 1, the following two properties of A are
equivalent.

Y The polytope P � AT has at least (1 � 	) times as many zerofree
(k � 1)-faces as T.

Y Among all problem instances (y, A) generated by some nonnega-
tive vector x0 with at most k nonzeros, the solutions to (NP) and
(LP) are identical, except in a fraction �	 of instances.

Table 1. Phase transitions �N and �VS in strong and weak
neighborliness

Phase
transition � � 0.1 � � 0.25 � � 0.5 � � 0.75 � � 0.9

�N 0.060131 0.087206 0.133457 0.198965 0.266558
�VS 0.240841 0.364970 0.558121 0.765796 0.902596
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In recent work on high-dimensional random polytopes (12),
we counted the faces of randomly projected simplices. Building
on work of Affentranger and Schneider (13) and especially
Vershik and Sporyshev (14) we considered the case where d and
n are large and proportional and were able to get precise
information about the phase transition between prevalence and
scarcity of weak neighborliness as k increases from 1 to d � 1.
We studied a function �VS (in honor of Vershik and Sporyshev,
who first implicitly characterized it) that maps out the phase
transition in weak neighborliness. Fix 	 	 0 and consider n large.
Weak neighborliness typically holds for k � �VS(d�n)�d�(1 � 	),
whereas for k 	 �VS(d�n)�d�(1 � 	), weak neighborliness typically
fails. We also showed that the same conclusions hold for weak
outward neighborliness as for weak neighborliness. Numerical
results are given in Table 1, in particular, the second line, where
�VS(0.1)  0.24. Informally, for most 10-fold underdetermined
matrices A and most vectors with fewer nonzeros than 24% of the
number of rows in A, the sparsest nonnegative solution can be
found by (LP). In contrast, �N(0.1)  0.06. Informally, if for a
typical matrix A we insist that every instance of (NP) with a
sufficiently sparse solution be solvable by (LP), then sufficiently
sparse must mean at most 6% d.

As a corollary, we obtain the following. Let S�(d, n, k) denote
the collection of all systems of equations (y, A) having a
nonnegative solution x0 with at most k nonzeros. When A is a
matrix with columns in general position, equivalence between
(NP) and (LP) depends only on the support of x0, as discussed
in Lemma 4.2. Place a probability measure on S�(d, n, k), which
makes the nullspace of A uniformly distributed among n � d
subspaces of Rn and makes the support of the sparsest solution
uniform on k-subsets of n objects. Using Table 1’s entry showing
�VS(1�2) 	 0.558, we have the following.

Corollary 1.5. Consider the systems of equations (y, A) in S�(n, 2n,
0.558n). For n large, the overwhelming majority of such (y, A) pairs
exhibit NP�LP equivalence.

1.4. Contents. Section 2 proves Theorem 1, and Section 3 explains
how Corollaries 1.1, 1.2, 1.3, and 1.4 follow from Theorem 1 and
existing results in polytope theory. Section 4 studies weak
neighborliness and justifies Corollary 1.5. Section 5, which is
published as Supporting Text in the supporting information on
the PNAS web site, discusses (LP) in settings not neighborly in
the usual sense, extensions to noisy data, and extensions to
situations when nonnegativity is not enforced. Positivity is seen
to be a powerful constraint.

2. Equivalence
2.1. Preliminaries. To begin, we relate (LP) to the polytope P. Note
that the value of (LP) is a function of y � Rd:

V� y� � val�LP� � inf 1�x subject to y � Ax , x � 0.

Note also that V is homogeneous: V(ay) � aV(y), a 	 0.We have
defined the polytope P � AT so that it is simply the ‘‘unit ball’’
for V:

P � 
y : y � AR�
n and V�y� � 1� .

To see this, write conv for the convex hull operation. The convexity
and homogeneity of V guarantees that the right side is conv({0} �
{aj}j�1

n ). We have defined P by cases; if 0 � conv({aj}j�1
n ), P �

ATn�1; otherwise, P � AT0
n. In each case P � conv({0} � {aj}j�1

n ).
We call subconvex combination a linear combination with

nonnegative combinations summing to at most one. The previ-
ous paragraph can be reformulated as follows.

Lemma 2.1. Consider the problem of representing y � Rd as a
subconvex combination of the columns (a1, . . . , an). This problem
has a solution if and only if val(LP) � 1. If this problem has a
unique solution then (LP) has a unique solution for this y.

We adopt standard notation concerning convex polytopes; see
ref. 1 for more details. In discussing the (closed, convex)
polytope P, we commonly refer to its vertices v � vert(P) and
k-dimensional faces F � Fk(P). v � P will be called a vertex of
P if there is a linear functional 
v separating v from P�{v}, i.e.,
a value c so that 
v(v) � c and 
v(x) � c for x � P, x � c. Thus
P � conv(vert(P)).Vertices are just 0-dimensional faces, and a
k-dimensional face of P is a k-dimensional set F � P for which
there exists a separating linear functional 
F, so that 
F(x) � c,
x � F, and 
F(x) � c, x � F. Faces are convex polytopes, each
one representable as the convex hullof a subset vert(F) �
vert(P); thus if F is a face, F � conv(vert(F)). A k-dimensional
face will be called a k-simplex if it has k � 1 vertices. Important
for us will be the fact that for k-neighborly polytopes all of the
low-dimensional faces are simplices.

It is standard to define the face numbers fk(P) � #Fk(P).We
also need the simple observation that

vert�AT� � A vert�T� , [2.1]

which implies

F��AT� � AF��T�, 0 � � � d; [2.2]

and so the numbers of vertices obey

f0�AT� � f0�T�. [2.3]

2.2. Basic Insights. Theorem 1 involves two insights recorded here
without proof. Similar lemmas were recently proven in ref. 6. The
first explains the importance and convenience of having simpli-
cial faces of P.

Lemma 2.2 (Unique Representation). Consider a k-face F � Fk(P)
and suppose that F is a k-simplex. Let x � F. Then

(i) x has a unique representation as a convex combination of
vertices of P.

(ii) This representation places nonzero weight only on vertices of F.

Conversely, suppose that F is a k-dimensional closed convex
subset of P with properties i and ii for every x � F. Then F is a
k-simplex and a k-face of P.

The second insight is that outward k-neighborliness can be
thought of as saying that the low-dimensional zerofree faces of
P are simply images under A of the faces of T n�1, and hence
simplices.

Lemma 2.3 (Alternate Form of Neighborliness). Suppose the polytope
P � AT has N vertices and is outwardly k-neighborly. Then

 � � 0, . . . , k � 1,  F � F��T n�1�, AF � F��AT�.

[2.4]

Conversely, suppose that Eq. 2.4 holds; then P � AT has N vertices
and is outwardly k-neighborly.

2.3. Theorem 1, Forward Direction. We suppose that P is outwardly
k-neighborly, that the nonnegative vector x0 has at most k
nonzeros, and show that the unique solution of (LP) is precisely
x0. We assume without loss of generality that the problem is
scaled so that 1�x0 � 1; thus x0 � T n�1.

Now, since x0 has at most k nonzeros, it belongs to a k �
1-dimensional face F of the simplex: F � Fk�1(T n�1). Hence y
belongs to AF, which, by outward neighborliness and Lemma 2.2,
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is a k � 1-dimensional face of P. Now, by Lemma 2.2, y has a
unique representation by the vertices of P, which is a represen-
tation by the vertices of AF only, and which is unique. But x0

already provides such a representation. It follows that x0 is the
unique representation for y obeying

1�x � 1.

Hence it is the unique solution of (LP).

2.4. Theorem 1, Converse Direction. By hypothesis, A has the
property that, for every y � Ax0, where x0 has no more than k
nonzeros, x0 is the unique solution to the instance of (LP)
generated by y. We will show that P has N vertices and is
outwardly k-neighborly.

By considering the case k � 1 with every xi � ei, we learn that
in each case the corresponding yi � Axi belongs to P and is
uniquely representable among subconvex combinations of (aj)j�1

n

simply by ai. This implies by Lemma 2.2 that each yi is a vertex
of P, so P has at least n vertices. Now if�	 conv{aj}j�1

n , 0 is also
a vertex of P. Since by Eq. 2.3 the number of vertices of P � AT
is at most the number of vertices of T, we see that P has exactly
N vertices. Consider now k 	 1, and a collection of k disjoint
indices i1, . . . , ik, 1 � i� � n. By hypothesis, for every x0 of the
form

x0 � �
��1

k

��ei�
,

with �� � 0 and ¥��� � 1, the corresponding problem (LP) based
on y � Ax0 has a unique solution, equal to x0. Since this latter
problem has a unique solution, there is (by Lemma 2.1) a unique
solution to the problem of representing each such y as a
subconvex combination of columns of A, and that solution is
provided by the corresponding x0. All of the x0 under consider-
ation populate a face F of T n�1, determined by i1, . . . , ik. By the
converse part of Lemma 2.2, AF is a face in Fk�1(AT).

Combining the last two paragraphs with the converse part of
Lemma 2.3, we conclude that P has N vertices and is outwardly
k-neighborly.

3. Corollaries
We first mention a standard fact about convex polytopes (ref. 3
and see chapter 7 in ref. 1).

Theorem 3.1. For every n 	 d 	 1 there are  d�2 -neighborly
polytopes in Rd with n vertices

Examples are provided by the cyclic polytopes, which come in
two standard families:

Y Moment curve cyclic polytopes: Let 0 � t1 � � � � � tn � �, and
let the jth column of the d � n matrix A be given by

aj � M�tj�, j � 1, . . . , n,

where M: R� � Rd is the so-called moment curve

M�t� � �t, t2, . . . , td�T.

The polytope obtained from the convex hull of the (aj)j�1
n is

 d�2 neighborly; see Gale (4). Note that A is a kind of
nonsquare Vandermonde matrix.

Y Trigonometric cyclic polytopes: Let 0 � t1� � � � � tn � 2�, and,
for d � 2m, let the jth column of the d � n matrix A be given
by aj � F(tj), where F : [0, 2�) � Rd is the trigonometric
moment curve

F�t� � �cos� t� , sin� t� , cos�2 t� , sin�2 t� , . . . ,

cos��d�2� t� , sin��d�2� t��T.

The polytope obtained from the convex hull of the (aj)j�1
n is

 d�2 -neighborly, again see ref. 4. Note that A is a kind of
nonsquare Fourier matrix.

Existing proofs of neighborliness of moment curve polytopes
(1, 4), after a simple adaptation, give Corollary 1.1. Given a
sequence (tj) with t1 � 0 the polytope conv{M(tj)} is  d�2 -
neighborly; since M(0) � 0, it follows that, for any sequence of
(tj), P � conv({0} � {M(tj)}j�1

n ) is  d�2 neighborly. Hence P �
conv({0} � {M(tj)}j�1

n ) is outwardly neighborly. Hence, defining
the matrix A � [M(t1), . . . , M(tn)], we get (LP)-(NP)-equivalence
up to breakdown point  d�2 � 1. Corollary 1.1 follows.

Corollary 1.3 also follows from the outward-neighborliness of
P � conv({0} � {M(tj)}j). Let yk � �̃k

(0). Represent �(0) by a
vector x0 with n entries, the jth one representing �(0){�j}. Define
tj � exp(�j), j � 1, . . . , n, and note that y � Ax0, where A is the
partial Vandermonde matrix associated with the moment curves
above. Since the polytope associated to A is  d�2 -outwardly
neighborly, if the measure �(0) is supported in no more than
 d�2 points, it is uniquely recovered from data y by solving (LP).

To obtain Corollary 1.2, we first adapt the proof of the
neighborliness of trigonometriccyclic polytopes to find that every
polytope conv({0} � {F(tj)}) is outwardly  d�2 -neighborly.
Details are given in the appendix of ref. 15.

Applying this, we can obtain Corollary 1.2. Break the m
observed complex data into real parts and imaginary parts,
giving a vector y of length d � 2m. Since �(0) is a nonnegative
measure supported at 0 � t1 � � � � � tn � 2�, represent it as a
vector x0 with j-entry �(0){tj}. The data y are related to the vector
x0 through y � Ax0, where A is the above partial Fourier matrix.
The corresponding polytope is outwardly neighborly. Hence, if
the nonnegative vector x0 has no more than m � d�2 nonzeros,
it will be uniquely reconstructed (despite n 	 d) from the data
y by (LP). (As stated earlier, Corollary 1.2 also follows from
theorem 3 in ref. 8; in fact, the underlying calculation in the proof
of theorem 3 in ref. 8 can be seen to be the same as the ‘‘usual’’
one in proving neighborliness of trigonometric cyclic polytopes,
although at the time of ref. 8 this connection was not known.)
After this article was originally submitted, we learned about work
by Jean-Jacques Fuchs (9) also implying Corollaries 1.2–1.3.

A wide range of neighborly polytopes is known. A standard
technique (already used in the two examples above) is to take n
points on a curve C�R � Rd (7, 16). The curve must be a
so-called curve of order d, meaning that each hyperplane of Rd

intersects the curve in at most d points. This construction is, of
course, intimately connected with the theory of moment spaces
and with unicity of measures having specified moments (17).
Constructions based on oriented matroids and totally positive
matrices have also been made by Sturmfels (18, 19). In the
context of this article, we note that if such a curve passes through
the origin, then, of course, conv({0}�{C(tj)}) is neighborly, and
so outwardly neighborly as well. However, as the trigonometric
moment curve shows, outward neighborliness is possible even
when such a curve does not pass through the origin.

Sturmfels (18, 19) has shown that (for even d) in some sense
curves of order d offer the only example of neighborly polytopes
(up to isomorphism). In short, it is known that polytopes offering
full  d�2 -neighborliness are special.

What is the generic situation? Gale (3) proposed that in some
sense most polytopes are neighborly. Goodman and Pollack
proposed a natural model of random polytope in dimension d
with n vertices (see ref. 13). They suggested taking the standard
simplex T n�1 and apply a uniformly distributed random projec-
tion, getting the random polytope AT n�1. Vershik and Sporyshev
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(14) considered this question in the case where d and n in-
crease to � together in a proportional way. In ref. 12 we revisit
the Vershik-Sporyshev model, asking about neighborliness of
the resulting high-dimensional random polytopes. It proves the
following.

Theorem 3.2. Let 0 � � � 1, let n tend to infinity along with d �
dn �  �n , and let A � Ad,n be a random d � n orthogonal
projection. There is �N(�) 	 0 so that, for � � �N(�), with
overwhelming probability for large n, AT n�1 is  �d -neighborly.

Thus, typical Goodman-Pollack polytopes have neighborliness
proportional to dimension. (This result permits, but does not
imply, that polytopes are not fully neighborly; i.e., the fact that
�N � 0.5 allows the possibility that k-neighborliness may not hold
up to the upper limit k �  d�2 . The lack of full neighborliness
for � � 0.42 can be inferred from the lack of d�2-weak
neighborliness described below.)

The Goodman-Pollack model is broader than it first appears.
By a result of Baryshnikov and Vitale (20), P is affinely
equivalent to the convex hull of a Gaussian random sample. We
can conclude the following.

Corollary 3.1. Let A � Ad,n denote a random d � n matrix with
columns aj, j � 1, . . . , n drawn independently from a multivariate
normal distribution on Rd with nonsingular covariance. Suppose d
and n are proportionally related by dn �  �n . Let � � �N(�). Then,
with overwhelming probability for large n, conv{aj}j�1

n is  �d -
neighborly.

Ref. 12 implies that the preceding two results hold just as
written also for P � AT 0

n, and conv({0}�{aj}), respectively.
Corollary 1.4 follows.

4. Weak Neighborliness and Probabilistic Equivalence
4.1. Individual Equivalence and General Position. We say there is
individual equivalence (between NP and LP) at a specific x0
when, for that x0, the result y � Ax0 generates instances of (NP)
and (LP) that both have x0 as the unique solution. In such a case
we say that x0 is a point of individual equivalence.

For general A the task of describing such points may be very
complicated; we adopt a simplifying assumption. Recall the
definition of A: Let a0 � 0 and, if 0 � conv{aj}j�1

n , let A � {aj}0
n.

Otherwise let A � {aj}1
n. We say that A is in general position in

Rd if no k-plane of Rd contains more than k � 1 ajs (i.e., viewing
the aj as points of Rd). Under this assumption, the face structure
of P is very easy to describe. A remark in ref. 20 (compare ref.
6) proves the following.

Lemma 4.1. Suppose that A is in general position. Then for k � d �
1, the k-dimensional faces of P � conv(A) are all simplicial.

Recalling Lemma 2.2, it follows that, when A is in general
position, whenever y belongs to a k-dimensional face of P with
k � d � 1, there is a corresponding unique solution of (LP). This
remains true for every y in that same face of P, and the unique
solution involves a convex combination of the vertices of that
same face. The vertices are identified with members of A. Those
members are identified either with the origin or certain canon-
ical unit basis vectors of Rn. Hence, the collection of such convex
combinations of vertices is in one-to-one correspondence with
points in a specific k-face of T. Moreover, by the uniqueness in
Lemma 2.2, a k-face of T can arise in this way in association with
only one k-face of P. Hence for k � d � 1, we have a bijection
between k-faces of P, and a subset Sk of the k-faces of T. We think
of Sk as the subset of k-faces of T destined to survive as faces
under the projection T � AT onto Rd.

The k-faces of T are in bijection with the supports of the
vectors belonging to those faces. Since two vectors x0 and x1 with
unit sum and common support belong to the same face of T, and
since each face as a whole survives or does not survive projection,
we conclude the following.

Lemma 4.2. Suppose that A is in general position and that x0 has at
most d � 1 nonzeros. The property of individual equivalence
depends only on the support of x0; if x0 and x1 have nonzeros in the
same positions, then they are either both points of individual
equivalence or neither points of individual equivalence.

There are, of course, (k
n) supports of size k. This gives us a

natural way to measure ‘‘typicality’’ of individual equivalence.

Fig. 1. Empirical verification of the NP�LP equivalence phase transition as a function of � with dn �  �n and sparsity k �  �dn in the case of n � 200; weak
neighborliness transition �VS(red). The fraction of successes in (LP) recovering (NP) is in grayscale, and the calculated weak neighborliness transition curve �VS(�)
is overlaid in red. Note that weak neighborliness exceeds d�2 for � 	 0.425; see subsection 4.3.
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Definition: Given a d � n matrix A, we say that a fraction �(1 �
	) of all vectors x with k nonzeros are points of individual
equivalence if individual equivalence holds for a fraction �(1 �
	) of all supports of size k.

A practical computer experiment can be conducted to ap-
proximate 	 for a given A and k. One randomly generates a
sparse vector x0 with randomly chosen support and arbitrary
positive values on the support. One forms y � Ax0 and solves
(LP). Then one checks whether the solution of (LP) is again x0.
	(A, k) can be estimated by the fraction of computer experiments
where failure occurs. Experiments of this kind reveal that for A
a typical random d � 2d orthoprojector, individual equivalence
is typical for k � 0.558d. See Fig. 1, which shows that the
experimental outcomes track well the prediction �VS.

4.2. Individual Equivalence and Face Numbers. We are now in a
position to prove Theorem 2 by using the above lemmas. For a
polytope Q possibly containing 0 as a vertex, f̃k(Q) denote the
number of zerofree k-faces, i.e., the number of faces of Q not
having 0 as a vertex. Restating Theorem 2 in the terminology of
this section we have the following.

Theorem 4. Let A be in general position. The following statements
are equivalent for k � d.

Y The zerofree face numbers of AT and T agree within a factor
1 � 	:

�1 � 	�f̃k�1�T� � f̃k�1�AT� � f̃k�1�T�.

Y A fraction �(1 � 	) of all vectors with k nonzeros are points of
individual equivalence.

Proof: A given support of size k corresponds uniquely to a k �
1 face F of T n�1. Individual equivalence at the given support
occurs if and only if AF is a face of P. By Eq. 2.2, the zerofree
faces of P are a subset of the images AF where F is a face of Tn�1.
Hence the identity

#�supports giving equivalence�

#�supports of size k�
�

f̃ k�1�AT�

f̃ k�1�T�
.

Of course, counting faces of polytopes is an old story. This
result points to a perhaps surprising probabilistic interpretation.
Suppose the points in A are in general position. We randomly
choose a nonnegative vector x with k � d nonzeros in such a way
that all arrangements of the nonzeros are equally likely; the
distribution of the amplitudes of the nonzeros can be arbitrary.
We then generate y � Ax. If the quotient polytope P has 99% as
many (k � 1)-faces as T, then there is a 99% chance that x is both

the sparsest nonnegative representation of y and also the unique
nonnegative representation of y. This is a quite simple and, it
seems, surprising outcome from mere face counting.

4.3. Interpreting Table 1. Our work in ref. 12 derives numerical
information about the Vershik-Sporyshev phase transition
�VS(�) 	 0, i.e., the transition so that for � � �VS(�), the
 �d -dimensional face numbers of AT n�1 are the same as those
of T to within a factor (1 � oP (1)), whereas for � 	 �VS(�) they
differ by more than a factor (1 � oP(1)). We show that the same
conclusion holds for the zerofree face numbers of AT 0

n.
Obviously �N(�) � �VS(�). Fixing some small 	 	 0, we have

with overwhelming probability for large d that

P � AT is � �̃N�d�-outwardly neighborly, and

� �̃VS�d , 	�-weakly outwardly neighborly;

here �̃N � �N(�) � 	, and �̃VS � �VS(�) � 	 obey

0 � �̃N � �N��� � �̃VS � �VS���.

Some numerical information is provided in Table 1. Two key
points emerge:

Y �N, the smaller, is still fairly large, perhaps surprisingly so.
While it tends to zero as � 3 0, it does so only at a rate
O(1�log(1��)); and for moderate � it is on the other of 0.1.

Y �VS is substantially larger than �N. The fact that it ‘‘crosses the
line’’ � � 1�2 for � near 0.425 is noteworthy; this means that
whereas a polytope can only be  d�2 neighborly, it can be
	d�2 weakly neighborly! In fact, we know �VS(�)3 1 as �3
1 (12, 14). For 	 	 0 and � sufficiently close to 1, for sufficiently
large d, typical weak neighborliness can exceed d(1 � 	)! This
is an important difference between neighborliness and weak
neighborliness and is the source of Corollary 1.5.

For a discussion of further implications of these results and
relationships to other work, see Supporting Text and also ref. 15.

D.L.D. thanks the Mathematical Sciences Research Institute (Berkeley,
CA) for its neighborly hospitality in the winter of 2005, while this article
was prepared, and the Clay Mathematics Institute for a Senior Scholar
appointment. J.T. thanks the Oxford University Computing Laboratory
(Oxford) for generous accommodations while portions of this article
were prepared. D.L.D. had partial support from National Science
Foundation Grants DMS 00-77261 and 01-40698 (Focused Research
Group), the National Institutes of Health, and the Office of Naval
Research–Multidisciplinary University Research Initiative. J.T. was sup-
ported by National Science Foundation Fellowship DMS 04-03041.
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