




The relatively good fitting quality of AM in Fig. 2B is marred
by an unphysical extrapolation to high temperatures. The relax-
ation time at an infinitely high temperature is given by the
quasilattice vibration period (�� 	 10�14 s), corresponding to the
time between successive assaults on the energy barriers to
structural rearrangement (29, 30). With an infinite frequency
shear modulus of G� 	 29 GPa for silicate liquids (31), Maxwell’s
equation yields �� � G��� 	 10�3.5 Pa-s. This extrapolated
viscosity is expected to be somewhat lower for molecular liquids
owing to their lower G�; also, silica is expected to have a lower
�� because of its anomalous strong-to-fragile cross-over (32). As
shown in Fig. 3A, the values of �� obtained by using AM are
unrealistically high, a result that follows directly from the
unphysical divergence of configurational entropy exhibited in
Fig. 1B. Previous studies by Hecksher et al. (27) and Yue (20)
have shown that when �� is held to a physically realistic value,
the fit quality of AM is significantly worse than that of VFT.

Next we consider fits to 568 different silicate liquids developed
through composition research at Corning Incorporated. The
liquids cover a wide range of composition space, from simple
calcium aluminosilicate ternaries through complex borosilicates
with up to 11 unique oxide components. Each composition is
represented by 6–13 data points in the range of 10–106 Pa-s,
obtained via a rotating-spindle method. Of these, 85 composi-
tions are also represented by data points at 106.6 Pa-s (the
softening point, obtained via parallel-plate viscometry) and 1011

Pa-s (obtained via beam bending viscometry). The measured
isokom temperatures are accurate to within 
1 K. Fitting the full
set of viscosity data, the current model of Eq. 10 yields the lowest
RMS error of 0.0347 log10(Pa-s), compared with 0.0350 for VFT
and 0.0470 for AM. Fig. 3B shows that the current model
produces the narrowest distribution of �� values, in agreement
with arguments concerning the universality of the �� parameter
for a given class of materials (33–35), viz., in the limit of infinite
temperature, the details of the interatomic potentials are no
longer important because the system is dominated by kinetic

energy. We note that this argument for a universal �� implicitly
assumes simple exponential relaxation in the high-temperature
limit (36). Fig. 3B also shows that the AM model produces
unphysically high values of �� for nearly all of the Corning
compositions.

Near the glass-transition temperature, molecular glasses (like
o-terphenyl) begin to form large clusters (as precursors to
crystallization) or simply begin to crystallize (37). Thus, the
low-temperature behavior is best studied with network glass data
where crystallization is strongly inhibited. To investigate the
low-temperature scaling of viscosity, we perform an extrapola-
tion test on the 85 Corning compositions that include 106.6 and
1011 Pa-s data. As illustrated in Fig. 4A, the three viscosity
models are fit to the high-temperature viscosity data only
(including the softening point at 106.6 Pa-s). The models are then
extrapolated to low temperatures to predict the 1011 Pa-s isokom
temperature. The error in the isokom prediction is plotted in Fig.
4 B–D, where it is apparent that both the VFT and AM
expressions exhibit systematic error, albeit in opposite directions.
The AM equation exhibits too little curvature, underpredicting
the 1011 Pa-s isokom temperature by an average of 5.6 K. In
contrast, VFT exhibits too much curvature and overpredicts the
1011 Pa-s isokom by an average of 9.4 K. This systematic error is
a direct result of VFT’s spurious assumption of dynamic diver-
gence at T0, which leads to an overly steep rise in viscosity at low
temperatures. As shown in Fig. 4D, our current viscosity model
of Eq. 10 exhibits no such systematic error when performing
low-temperature extrapolation; its average error of �0.5 K falls
within the experimental error bars of 
1 K. [As an aside, the
recent model of Elmatad et al. (9) underpredicts the 1011 Pa-s
isokom temperatures by an average of 72.0 K under exactly the
same test as above, a result that demonstrates the dramatic
breakdown of simple parabolic scaling when extending to low
temperatures. Hence, this model is not in the same ballpark as
any of the three other models considered.]

Fig. 2. Model fits. (A) Viscosity curves of five oxide and five molecular liquids
covering a range of fragility values from 20 to 115. (B) Root mean square error
in the fitted viscosity curves using the three models of Eqs. 8–10.

Fig. 3. Extrapolated infinite temperature viscosity. (A) Distribution of ��(x)
values for the compositions in Fig. 2. (B) Histogram of ��(x) values for the
best-fit viscosity curves of 568 different Corning aluminosilicate compositions.
The current model produces the narrowest distribution of ��(x) values.
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Discussion
The substantially enhanced extrapolation ability of Eq. 10
offers a cogent argument against the existence of dynamic
divergence and the vanishing of configurational entropy at
finite temperature, a view that is also supported by the
low-temperature experiments of Simon et al. (38). Our results
therefore cast doubt on the existence of an equilibrium
second-order transition temperature T2 (10, 24) equivalent to
T0 (21) and TK (23). According to Adam–Gibbs entropy
function, Sc � �Cp ln(T/T2), the configurational entropy would
vanish at T � T2, where �Cp is the difference in isobaric heat
capacity between the equilibrium liquid and the glass at Tg
(10). Another problem with the Adam–Gibbs Sc function is
divergence in the high-temperature limit. Please note that
although the derivation of our current model is based on the
Adam–Gibbs relation between thermodynamics (Sc) and ki-
netics (�), it does not rely on the specific form of Sc(T)
assumed by Adam and Gibbs in their discussion of the ideal
glass transition.

Of the three viscosity models in Eqs. 8–10, only the current
model of Eq. 10 offers a realistic extrapolation of configurational
entropy in both the high- and low-temperature limits. As a result,
Eq. 10 provides for physically reasonable values of ��, as well as
a more accurate description of the low-temperature scaling of
viscosity. The failure of the VFT and AM models in either limit
can be attributed to finite size effects, a common problem in
complex systems (39). In the high-temperature limit, shear flow
can be described by single-atom motion. As the temperature is
lowered, the shear flow becomes cooperative and the length
scale of the cooperatively rearranging regions increases (10).
Such length-scale effects are critical for understanding other

aspects of supercooled liquid and glassy behavior, such as
stretched exponential relaxation (40) and dynamical heteroge-
neities (41–43). In a more general sense, by demanding good
limits for both the high- and low-temperature scaling of viscosity,
we have extended some of the basic ideas of complex analysis to
glass-forming systems. The interested reader is encouraged to
examine the recent work of Naumis and Cocho (39). Building on
the notion of multiple length scales, these authors present an
elegant N/D formula (44) for integrating rank distributions (39).
Owing to the convolution of multiple length scales, the expres-
sions for N (the numerator) and D (the denominator) in
glass-forming systems need not be polynomials.

The improved accuracy of Eq. 10 in performing low-
temperature extrapolations, combined with its absence of a
singularity at finite temperature, offers strong evidence against
the existence of dynamic divergence in glass-forming liquids.
Any realistic model of the supercooled liquid and glassy states
must account correctly for the low-temperature thermodynamics
and kinetics. A particularly promising approach is the energy-
landscape model of Stillinger (26, 45). Whereas the current
paper deals solely with equilibrium liquid viscosity, a separate
investigation by Mauro et al. (46) extends the analysis to
viscosities up to 1016 Pa-s, providing a thorough theoretical and
experimental analysis of the nonequilibrium viscosity of glass
accounting for the effects of thermal history in the sub-Tg
regime, including the cross-over to Arrhenius scaling at temper-
atures below the glass transition (47).
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Fig. 4. Results of the low-temperature extrapolation test. (A) Low-temperature extrapolation test, where the viscosity models are fit to high-temperature
viscosity data and then extrapolated to predict the 1011 Pa-s isokom temperature. (B) Error in the predicted 1011 Pa-s isokom for 85 Corning compositions. The
compositions on the horizontal axis are ordered in terms of descending error for the three models. A given position on the horizontal axis generally corresponds
to three different liquids. (C) Root mean square error in the predicted isokom temperature using the three different models. (D) Average error in the predicted
isokom temperature.
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