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Studies have reported important effects of recent climate change
on Antarctic species, but there has been to our knowledge no
attempt to explicitly link those results to forecasted population
responses to climate change. Antarctic sea ice extent (SIE) is
projected to shrink as concentrations of atmospheric greenhouse
gases (GHGs) increase, and emperor penguins (Aptenodytes for-
steri) are extremely sensitive to these changes because they use
sea ice as a breeding, foraging and molting habitat. We project
emperor penguin population responses to future sea ice changes,
using a stochastic population model that combines a unique
long-term demographic dataset (1962–2005) from a colony in Terre
Adélie, Antarctica and projections of SIE from General Circulation
Models (GCM) of Earth’s climate included in the most recent
Intergovernmental Panel on Climate Change (IPCC) assessment
report. We show that the increased frequency of warm events
associated with projected decreases in SIE will reduce the popu-
lation viability. The probability of quasi-extinction (a decline of
95% or more) is at least 36% by 2100. The median population size
is projected to decline from �6,000 to �400 breeding pairs over this
period. To avoid extinction, emperor penguins will have to adapt,
migrate or change the timing of their growth stages. However,
given the future projected increases in GHGs and its effect on
Antarctic climate, evolution or migration seem unlikely for such
long lived species at the remote southern end of the Earth.

bird populations � climate change � quasi-extinction � sea ice �
stochastic matrix population models

A major challenge in ecology and conservation is to project
the ecological responses of future climate changes (1, 2),

using the reported effects of recent climate change on ecological
processes. Recently, Thomas et al. (3) predicted that future
climate change may cause the extinction of between 15% and
37% of species by 2050, based on species-specific climate enve-
lopes. However, they project 0% species extinction risk for the
ice biome, although there is clear evidence of dramatic changes
in polar ecosystems related to anthropogenic warming, which
may lead to extinctions [e.g., penguins in the Antarctic Peninsula
(4), polar bears in the Arctic (5)].

To project a population’s response to future climate change
one must (i) quantify the effects of climate on vital rates, (ii)
project future climate conditions (as we do here with GCM
climate models), and (iii) integrate these effects into population
models. Most of the literature on population-climate studies has
focused on one part of the life cycle [e.g., changing timing of life
history in relation to climate conditions (6, 7)], because of the
difficulty of measuring climate influences on life history traits
over the entire life cycle (8). Few studies have adressed the
population response to observed climate change (but see refs.
9–11); even fewer have predicted the population response to
future changes (but see ref. 5).

Based on knowledge of the effects of sea ice on the vital rates
and population of emperor penguins (12, 13), we develop a
stochastic population model to estimate population growth rates

and probabilities of quasi-extinction under projections of future
ice conditions from climate models used in the latest IPCC
Fourth Assessment Report (14).

Emperor penguins reproduce during the harsh Antarctic winter
in dense colonies distributed around Antarctica. Sea ice is a key
breeding and feeding habitat for emperor penguins. Colonies are
formed on sea ice many kilometers from the open sea, and breeding
emperors make foraging trips between the colony and areas of open
water during the entire incubation and chick rearing periods (15).
In years with dense and extensive sea ice cover, foraging trips are
longer, energetic costs for adults are higher, and offspring provi-
sioning is lower (16), resulting in lower hatching success (12).
Alternatively, absence of, or early break-up of, the winter sea ice
holding up the colony may cause low breeding success (17). Sea ice
extent during winter also affects the abundance of prey for emperor
penguins. Winters with extensive sea ice enhance krill abundance
(18), and emperor penguins mainly feed on fish species that depend
on krill and other crustaceans (19, 20). In accordance with this,
years with reduced sea ice extent coincide with reduced adult
survival rates (12). The effects of sea ice on vital rates of the
emperor penguin are thus complex (4, 21) and affect the dynamics
of its populations.

A dramatic example of such effects, which provides a key
element in our analysis, occurred in Terre Adélie between 1972
and 1981. A sudden decrease in winter sea ice extent during
several consecutive years, by � 11% on average, coincided with
an abrupt decline of the population, by �50% (13), and these
abrupt changes were attributed to a regime shift (22) (see Fig.
S1). Analyses of ice core data (23) suggest a change in meridional
atmospheric circulation during the 1970s, bringing more mois-
ture from warm subtropical sources to the Antarctic coast,
possibly causing the highest winter air temperature and the
lowest winter SIE observed in Terre Adélie during the regime
shift (22).

Results and Discussion
We developed a stochastic version of a stage-classified popula-
tion model (13) (see Materials and Methods) to determine the
effects of a fluctuating sea ice environment on the stochastic
population growth rate. Following previous studies (see review
in ref. 24) we classified the environment into 2 distinct states:
outside (1962–1971; 1982–2006) and inside (1972–1981) the
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regime shift period (see Materials and Methods). We will refer to
these as ‘‘normal’’ and ‘‘warm’’ conditions, respectively. The
environment follows a 2-state Markov chain that determines the
frequency and duration of warm conditions (see Materials and
Methods).

Fig. 1 shows the resulting stochastic growth rate as a function
of the frequency and duration of warm events. It decreases
dramatically as the frequency increases. The duration (reflecting
the autocorrelation of the environment) has little effect, as
expected for such long-lived species. A frequency greater than
w � 0.03 produces a negative long term growth rate. Thus, if
climate change increases the frequency of warm events, it will
reduce the population viability of the emperor penguin.

Although climate models differ on the sign of Antarctic sea ice
trends at the end of the 20th century (25) (see SI Text and Table
S1), suggesting a strong influence of natural variability, nearly all
models project that sea ice will shrink in future global warming
scenarios (26). To project the consequences of this decline, we
used a 3-step approach (as in ref. 5), which we will describe first
in outline and later in more detail. First, we obtained forecasts
of sea ice from a set of IPCC climate models from the CMIP3
archive (see Materials and Methods and SI Text). Second, we
classified each year as warm or normal, by comparing the
proportional decline in ice in that year to a specified SIE
threshold value. The result is a binary sequence of warm and
normal years, produced by each climate model, for the rest of the
century. These sequences were translated into forecasts of the
frequency of warm events, using nonparametric smoothing (5,
27). Finally, the frequencies were used to produce stochastic
population projections. Therefore, the analysis depends on the
set of climate models, on the sea ice forecasts, and on the SIE
threshold defining a warm event.

The sea ice forecasts were extracted from the output of a set
of 16 IPCC models over the emperor penguin foraging sector
(16) in Terre Adélie, i.e., sector 120°E–160°E (see SI Text and
Fig. S2). The climate models were forced with the ‘‘business as
usual’’ forcing scenario A1B, which describes a future world of
very rapid economic growth that depends on fossil and nonfossil
energy sources in balanced proportions. Under this scenario,
CO2 levels double from the preindustrial level of 360 parts per
million (ppm) to 720 ppm by 2100. We selected 10 of these
models, in which the statistical properties of SIE match with
those of the satellite observations (28, 25) (see Fig. S3), for
analysis. We transformed the SIE from each model to propor-
tional anomalies (SIEa), measured relative to the mean from
1982–2006, as shown in Fig. 2A for each of the 10 models.

We defined a warm event to occur whenever SIEa drops below
a specified SIE threshold. Fig. 2B shows the frequency of warm
events, as a function of the SIE threshold, for model projections

Fig. 1. Stochastic growth rate (log�s) as a function of the frequency w and
mean duration d of warm events (in years). It was calculated from a stochastic
model with 2 states: normal and warm environmental conditions. The contour

denotes log�s � 0. The frequency of warm events must satisfy d �
w

(w � 1)
. The

dark area indicates impossible combinations of w and d.

Fig. 2. Sea ice anomolies and warm events. (A) Proportional change in winter sea ice extent anomalies (SIEa) in Terre Adélie (sector 120°E-160°E), measured
relative to the mean over the period 1982–2006, produced by 10 coupled IPCC climate models from 1900 to 2100 (for line colors, see legend). (B) Frequency of
warm events calculated from the backward projections of SIEa for 10 IPCC climate models from 1900 to 2006 (color lines) and calculated from SIEa satellite
observations from 1979 to 2006 (black line) as a function of the threshold defining a warm event. The frequency of warm events experienced by emperor penguin
between 1952 and 2006 is 0.18, and is represented by the dotted line. (C) Frequency of warm events from 1900 to 2100 calculated from the SIEa produced by
10 IPCC climate models with the most conservative warm event threshold of �0.15. The dotted black line represent wt calculated from the sequence of warm
and normal events define by the observed regime shift from 1952 to 2006.
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and for observations. To identify an appropriate SIE threshold,
we note that the 56-year penguin observation period includes 10
warm events, for a frequency of w� o � 10/56 � 0.18 (dotted line
of Fig. 2B). Thus, for each climate model, we calculated the SIE
threshold that produced a frequency of w� o � 0.18 over the
observation period; these thresholds range from �0.32 for model
IPSL-CM4 to �0.02 for model UKMO-HadGEM1, with 50% of
the threshold values falling in the range [�0.14,�0.07]. The same
calculation applied to SIE from satellite data yields a threshold
of �0.15. Thus, we used a range of SIE threshold values from
�0.07 (the most generous) to �0.15 (the most conservative).
Each model, and each SIE threshold, generates a binary time
series of warm and normal years for the rest of this century. We
used nonparametric binary regression (27) to transform the
binary time series into probabilities wt of a warm event (see Fig.
2C for the conservative threshold of �0.15). All 10 climate
models predict increased frequencies of warm events by the end
of this century.

Finally, using the probabilities wt, we generated 1000 stochas-
tic population projections for each of the 10 climate models (thus
10000 population trajectories), and calculated the probability of
quasi-extinction (defined as a decline by 95%) occurring by 2100.

Fig. 3A shows the results. There is a high probability of
quasi-extinction by the end of the century (0.36 and 0.84 for
thresholds of �0.15 and �0.07, respectively). The median of the
10,000 population projections is nearly constant between 2000
and 2006, which is in good agreement with observed data (Fig.
3B). After 2006 it decreases slowly, and then more rapidly after
2018, to �400 breeding pairs by 2100 for the most conservative
threshold. This is a decline of 93%. Each stochastic population
trajectory shows a different pattern with periods of relative
stability, gradual decline, and abrupt decrease. Some decline late
[e.g., trajectories from climate model MIROC3.2(medres)]
whereas others decline early (e.g., trajectories from climate
model CNRM-CM3). By the end of this century, all of the
population realizations that had not become quasi-extinct by
2100, were at that point declining strongly.

These projections are based on a model that includes the
entire life cycle and its response to climate (8), integrated with
projection of future climate variability. Analyses that include
only part of the life cycle (for example, see ref. 29) may reveal
some aspects of population response, but cannot predict future
trends and variability in a stochastic environment.

Conclusions
We conclude that if winter sea ice extent declines at the rates
projected by IPCC models, and continues to influence emperor
penguin vital rates as it did in the second half of the 20th century,
the emperor penguin population in Terre Adélie will decline
dramatically by 2100. Our conclusions are robust for the follow-
ing reasons. First, our projections of sea ice are based on 10
diverse IPCC climate models. Second, our 2-state environment
model assumes that future warm events have no greater impact
on penguins than did the warm events during the 1970s. The
IPCC models, however, predict that warm years will become
warmer; a modified model taking that into account would only
increase the probability of quasi-extinction (see SI Text and Fig.
S4). Finally, our demographic model is well supported by the
data (13). Including other demographic processes, such as
density dependence (30), or sex ratio effects, would increase the
probability of quasi-extinction.

To avoid extinction, the emperor penguin must adapt by
microevolutionary changes or phenotypic plasticity [e.g., by
changing timing of their growth stages (2, 31)]. So far, the dates
of arrival to the breeding colony and of egg laying have not
changed in emperor penguins as they have in other Antarctic
seabirds in Terre Adélie (32), suggesting a slow rate of adapta-
tion. Emperor penguins may respond slowly to new selective

pressure due to their long generation time (2, 33). The geo-
graphical range of Antarctic penguins may shrink following
climate warming because the continent limits their movement
south. In the Antarctic Peninsula, where warming has been the
most pronounced during the second half of the 20th century (34),
the northernmost emperor penguin population decreased from
150 breeding pairs in 1950s to only a few breeding pairs today
(35). The southernmost emperor penguin populations (�25% of
the world population), in the Ross sea, are currently stable (36)
as ice conditions there have slightly increased in recent years
(37). As the Antarctic warms, the Ross sea may be the last
sanctuary for emperor penguin populations. However, this re-
gion too will eventually experience reduced sea ice extent as
concentrations of atmospheric GHGs increase further (26).

Materials and Methods
Demographic and climatic time series. Monitoring of the emperor penguin
breeding population and counts of fledged chicks started in 1952 and have

Fig. 3. Quasi-extinction and population projection. (A) Probability of quasi-
extinction (a decline of 95% or more) of the emperor penguin population in
Terre Adélie by 2100, as a function of the warm event thresholds. The
distribution of warm event thresholds calculated from Fig. 2B for the 10 IPCC
models is represented by the gray bars, and warm event threshold calculated
from Fig. 2B for the satellite observation by the vertical dotted line. The
probability of quasi-extinction varied from 0.36 to 0.84 over the range of likely
thresholds [�0.15; 0.07]. (B) Observations and projections of the emperor
penguin population. The thick dark line is the observed number of breeding
pairs. The thick orange line from 1962 to 2000 is the projected number of
breeding pairs based on the observed sequence of warm events. The thick red
line from 2005 to 2100 is the median of 10,000 stochastic projections based on
the forecasts of SIEa produced by the 10 IPCC models. To give a sense of the
variability in these projections, 30 projections from 2005 to 2100 (three for
each climate model) are shown; line colors as in Fig. 2.
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been carried out every year since 1962 (12) (see Fig. S1). These data permit
calculation of breeding success each year for the entire period. Mark-
recapture data collected between 1971 and 1995 permit estimation of other
vital rates including adult survival and the proportion of breeders (see ref (13).
for more details on the methodology).

The regime shift is defined as a rapid change from one relatively stable state
to another. We applied sequential t tests and F tests (38) to the times series of
the number of breeding pairs and chicks (see Fig. S1) to detect the regime shift
in mean and variance of the signal. Fig. S1 shows the regime shift between
1972–1981.

Data on future sea ice extent were obtained from 16 climate models
participating in the IPCC assessment report (26) and averaged over the austral
winter (July to September). The data are part of the World Climate Research
Program’s (WCRP’s) Coupled Model Intercomparison Project phase 3 (CMIP3)
multimodel dataset, which is available at www.pcmdi.llnl.gov/ipcc/about_
ipcc.php. Table S1 summarizes information about these 16 IPCC models.

Stochastic stage-classified model. The stage-classified model distinguishes
breeding adults, nonbreeding adults, and 5 age classes of prebreeders. The
demography is described by: n(t � 1) � Atn(t), where the matrix At projects the
population vector n from t to t � 1. Estimation of the vital rates and construc-
tion of matrices is described in ref. 13. The stochastic population growth rate
was calculated by Monte Carlo simulation as:

log � s � lim
T3�

1
T

log �AT�1 . . . A0n�0�� [1]

using T � 50,000. If log �s � 0, the population will become extinct. The initial
population had the stable age distribution and the number of breeding pairs
observed in 1962.

To take into account the effect of warm events such as occurred during the
regime shift, we constructed a stochastic model with 2 states: normal and
warm environmental conditions. We constructed projection matrices, AN and
AW, for normal and warm conditions, as averages of annual matrices outside
and inside the regime shift, respectively (see Table S2). At each time step, a
matrix is selected according to a Markov chain with the transition matrix:

normal
warm � normal warm

1 � p q
p 1 � q

� [2]

where w is the transition probability from normal to warm conditions, and w
the transition probability from warm to normal conditions. The long-term
frequency and the average duration of warm events are respectively: w � p/(p
� q) and d � 1/q.
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