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Climate change science focuses on predicting the coarse-grained,
planetary-scale, longtime changes in the climate system due to
either changes in external forcing or internal variability, such as
the impact of increased carbon dioxide. The predictions of climate
change science are carried out through comprehensive, computa-
tional atmospheric, and oceanic simulation models, which necessa-
rily parameterize physical features such as clouds, sea ice cover, etc.
Recently, it has been suggested that there is irreducible imprecision
in such climate models that manifests itself as structural instability
in climate statistics and which can significantly hamper the skill of
computer models for climate change. A systematic approach to
deal with this irreducible imprecision is advocated through algo-
rithms based on the Fluctuation Dissipation Theorem (FDT). There
are important practical and computational advantages for climate
change science when a skillful FDT algorithm is established. The
FDT response operator can be utilized directly for multiple climate
change scenarios, multiple changes in forcing, and other para-
meters, such as damping and inverse modelling directly without
the need of running the complex climate model in each individual
case. The high skill of FDT in predicting climate change, despite
structural instability, is developed in an unambiguous fashion
using mathematical theory as guidelines in three different test
models: a generic class of analytical models mimicking the dynami-
cal core of the computer climate models, reduced stochastic models
for low-frequency variability, and models with a significant new
type of irreducible imprecision involving many fast, unstable
modes.

climate change ∣ irreducible imprecision

The climate is an extremely complex, coupled system involving
significant physical processes for the atmosphere, ocean, and

land over a wide range of spatial scales, from millimeters to thou-
sands of kilometers, and time scales, from minutes to decades or
centuries (1, 2). Climate change science focuses on predicting the
coarse-grained, planetary scale, longtime changes in the climate
system due to either changes in external forcing or internal vari-
ability, such as the impact of increased carbon dioxide (3). For
several decades, the predictions of climate change science have
been carried out with some skill through comprehensive compu-
tational, atmospheric, and oceanic simulation (AOS) models
(1–3) that are designed to mimic the complex, physical, and
spatio-temporal patterns in nature. Such AOS models, either
through lack of resolution due to current computing power or
through inadequate observation of nature, necessarily parameter-
ize the impact of many features of the climate system such as
clouds, mesoscale and submesoscale ocean eddies, sea ice cover,
etc. There are intrinsic errors in the AOS models for the climate
system and a central scientific issue is the effect of such model
errors on predicting the coarse-grained, large-scale, longtime
quantities of interest in climate change science. The potentially
high skill of systematic algorithms based on the fluctuation dis-
sipation theorem (FDT), whereby climate change projections
are made on the basis of statistics calculated from the present

climate (4–15), is the approach advocated to address these issues
in this paper. There are important practical and conceptual
advantages for climate change science when a skillful FDTalgo-
rithm can be established for suitable low-frequency variables in a
climate model. The linear statistical response operator produced
by FDT can be utilized directly for multiple climate change
scenarios, multiple changes in force and other parameters, and
inverse modelling directly without the need for running a complex
climate model in each case, often a computational problem of
overwhelming complexity. In particular, FDT has been demon-
strated to have high skill for the mean and variance responses
in the upper troposphere for changes in tropical heating in a pro-
totype atmospheric, general circulation model and when utilized
for complex, multiple force, and inverse modelling issues of
interest in climate change science (8, 9).

In a recent, stimulating article, McWilliams (16) has termed
the impact of the errors in AOS models as the change in the
probability density functions (PDFs) in the climate equilibrium
compared with the true PDFs from nature as “irreducible impre-
cision.” The main hypothesis advocated in ref. 16 is that structural
instability is the main source of irreducible imprecision for
climate change science. In other words, small changes in AOS
model parameters or formulation result in significant differences
in the longtime PDFs or the phase-space attractor and these can
effect climate change projections. Virtually all physical systems
have structural instability. For example, the dynamical core of
AOS models can be written abstractly (7, 17) as the quadratic
nonlinear system for a vector ~u ∈ RN

~ut ¼ ~Bð ~u; ~uÞ þ L ~u − αðtÞ ~uþ ~FðtÞ; [1]

with αðtÞ the damping or dissipation coefficient, ~FðtÞ the external
forcing, L a skew-symmetric matrix representing rotation, and
~Bð ~u; ~uÞ a quadratically nonlinear operator arising from nonlinear
advection. Physical conservation of energy principles (7, 17)
dictate that ~Bð ~u; ~uÞ satisfies

~u · ~Bð ~u; ~uÞ ¼ 0; div ~u ~Bð ~u; ~uÞ ¼ 0; [2]

and this is an immediate source of structural instability since
AOS models often do not satisfy A and B due to finite mesh
discretization errors (16). In fact, the principal example utilized
(16) to demonstrate irreducible imprecision and structural insta-
bility is the special case of 1 with ~FðtÞ≡ 0 and αðtÞ, a constant
diffusion operator involving decaying two-dimensional turbulence
(17, 18). The other primary example discussed (16) regarding
irreducible imprecision and structural instability is Lorenz’s
famous three-dimensional chaotic system (19) where the attractor
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properties are known to exhibit sensitive dependence on small
changes in the coefficients of this model.

The main point of this paper is to demonstrate that systematic
algorithms for low-frequency climate response based on FDT
have significant, high skill for coarse-grained climate change pro-
jections despite structural instability and various types of irreduc-
ible imprecision. Simplified models with both firm mathematical
underpinning and some relevance to central issues in climate
change science, as well as (16), are utilized here to demonstrate
this high skill of judicious FDTalgorithms. There is no doubt that
comprehensive AOS models in regimes to model realistic climate
science are turbulent, chaotic, dynamical systems, but the nature
of their chaotic dynamics is radically different from Lorentz’s
famous three-equation model (19), which is weakly mixing with
one unstable direction on the attractor and high symmetry. In
contrast, realistic AOS models (7, 10, 12, 20) have high-dimen-
sional, unstable manifolds, mix strongly with exponential decay of
correlations, and have coarse-grained PDFs in the climate equi-
librium that are smooth and often nearly Gaussian (12, 20–23).
Furthermore, the coarse-grained, large-scale dynamics often ac-
quire an intrinsic stochastic noise due to interaction with rapidly
changing, small-scale variables (20, 24–26). In climate change
science, the main interest involves predictions of the coarse-
grained, large-scale climate impacts and the above effects in tur-
bulent, large-dimensional, dynamical systems ameliorate the im-
pact of structural instability and irreducible imprecision for the
coarse-grained, large-scale variables. This has been established
in recent literature. Two of the authors (10, 12) have developed
a unique, blended response algorithms for FDT that explicitly
demonstrate, for a wide range of forcings, the high skill of
linear response theory despite structural instability for large-
dimensional dynamical system models with the form in 1 of rel-
evance to atmospheric science, such as the L-96 model (10, 27),
and truncated barotropic flow on the sphere with realistic orogra-
phy (12). With this background, we outline the remainder of this
paper. First, we discussed the general FDT framework as back-
ground. Then, a general family of mathematically exact statistical
solutions for the general models in 1 and 2 were utilized to ex-
plicitly demonstrate the high skill of FDT in predicting climate
change despite explicit structural instability. The ameliorating
effects of stochastic noise, despite deterministic structural in-
stability for FDT climate change projections, were discussed by
developing analytic formulas for FDT in a scalar, nonlinear
stochastic model that arises as the canonical, scalar model for
low-frequency, atmospheric or oceanic regimes (28). Then, the
high skill of FDT for low-frequency climate variables is explicitly
demonstrated for a toy AOS model that acquires a different type
of irreducible imprecision through a large-dimensional space of
short-time instabilities representing gravity waves or moist con-
vection. The paper ends with a brief discussion.

General Properties of FDT
Consider a dynamical system with noise like an AOS model
written as

~ut ¼ ~Fð ~uÞ þ σð ~uÞ _~W ; [3]

for ~u ∈ RN , where σ is an N × K noise matrix and _~W ∈ RK is a K-
dimensional white noise. We assume that 3 is written in the Ito
sense so that the associated Fokker–Planck equation for the prob-
ability density pð ~u; tÞ is

pt ¼ −div ~uð ~Fð ~uÞpÞ þ
1

2
div ~u ∇ ~uðQpÞ≡ LFPp; [4]

where Q ¼ σσT . The climate state associated with 3 is the prob-
ability density peqð ~uÞ that satisfies LFPpeq ¼ 0 and the climate
statistics of some functional Að ~uÞ are determined by

hAð ~uÞi ¼
Z

Að ~uÞpeqð ~uÞd ~u: [5]

Next, perturb the system in 3 by the change δ ~wð ~uÞf ðtÞ, that is,
consider the perturbed equation

~uδt ¼ ~Fð ~uδÞ þ δ ~wð ~uÞf ðtÞ þ σð ~uδÞ _~W : [6]

Calculate perturbed climate statistics by utilizing the Fokker–
Planck equation associated with 6 with initial data given by the
unperturbed climate equilibrium. Then, FDT (7) states that if
δ is small enough, the leading order correction to the statistics
in 5 becomes

δhAð ~uÞiðtÞ ¼
Z

t

0
Rðt − sÞδf ðsÞds; [7]

where RðtÞ is the linear response operator that is calculated
through correlation functions in the unperturbed climate

RðtÞ ¼ hAð ~uðtÞÞBð ~uð0ÞÞi; Bð ~uÞ ¼ −
div ~uð ~wpeqÞ

peq
[8]

The noise in 3 is not needed for FDT to be valid but, in this form,
the equilibrium measure needs to be smooth.Tthere is an alter-
native formulation of FDT for σ ≡ 0 in 3 that avoids this smooth-
ness requirement or even explicit knowledge of peqð ~uÞ and is
useful for developing short-time FDTalgorithms based on a lin-
ear, tangent model (10–13). There are useful generalizations of
FDT that apply to ensemble predictions of time-dependent sys-
tems and even allow for noise perturbations to assess model error
(14, 15). FDT does not require any linearization of the underlying
dynamics in 3. One major stumbling block in applying FDT
directly in the form in 8 is that the equilibrium measure peqð ~uÞ
is not known exactly. In the quasi-Gaussian (qG-FDT) approxi-
mation, one utilizes an approximate Gaussian equilibrium mea-
sure, pGeq, with mean and covariance matrix that match those in
the climatology, peq. One then calculates

BGð ~uÞ ¼ −
div ~uð ~wpGeqÞ

pGeq
; [9]

and replaces Bð ~uÞ by BGð ~uÞ in 8 in the qG-FDT (4, 6–10, 12). The
correlation in 8 is calculated, usually, by integrating the original
system in 3 over a long trajectory or an ensemble of trajectories
covering the attractor for shorter times assuming mixing and
ergodicity for 3.

Prototype Models with Transparent Structural Instability
and High Skill of the FDT Climate Response
The unperturbed model climate system that is studied here is gen-
erated by the undamped unforced version of 1 so that αðtÞ≡ 0
and ~FðtÞ≡ 0. There are many examples of inviscid geophysical
models satisfying 1 without damping and forcing as well as
the structural conditions in 2. These include multilayer, quasi-
geostrophic models with topography in pseudo-energy variables
on the sphere or with periodic geometry (17) as well as important
test models such as the Lorenz-96 model, the truncated Burgers-
Hopf, and Kruskal-Zabusky models (7). Numerical experiments
show that, with a sufficiently high number of degrees of freedom,
all these truncated, undamped, unforced models are turbulent,
dynamical systems that are strongly mixing (7, 17). The structural
properties in 2 guarantee (17) that the energy EðtÞ ¼ 1∕2 ~u · ~u
is conserved for solutions of 1 and also that the climatology
of this system is a Gaussian invariant measure, peq ¼
CN expð−1∕2σ−2eq ~u · ~uÞ where σeq is the climate variance. We claim
that this climatology provides a transparent example of structural
instability as defined in ref. 16 with respect to changes in the
damping coefficient δαðtÞ that is switched on at time t ¼ 0 and
can have any magnitude and form. By using 2 and the radial
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symmetry of the unperturbed climate as the initial data, the
Fokker–Planck equation associated with the perturbation of
damping in the present setting from 6, simplifies for radially sym-
metric solutions and becomes

pt ¼ div ~uðδαðtÞ ~upÞ; pjt¼0 ¼ peq: [10]

The equation in 10 is easily solved explicitly and yields the exact
statistical solution

pδð ~u; tÞ ¼ ðλδðtÞÞNpeqðλδðtÞ ~uÞ; λδðtÞ ¼ e
R

t

0
δαðsÞds: [11]

The explicit, statistical perturbations, by damping of the climatol-
ogy, yield a Gaussian statistical solution with variance σ2δ :

σδðtÞ ¼ σeqe
−
R

t

0
δαðsÞds: [12]

We claim that these perturbations transparently manifest struc-
tural instability of the unperturbed climate. First, if there is
any small, fixed value of δ so that ∫ t

0δαðsÞds → ∞ as t → ∞,
for example, if δα is a positive constant, then the variance
σδðtÞ tends to zero with time and the new equilibrium climate
has the trivial attractor concentrated at zero with no climate
variability. On the other hand, if there is enough amplification
so that ∫ t

0δαðsÞds → −∞, the variance σδðtÞ grows without bound
as time increases so that there is climate runaway. These two
radically different climate change scenarios, arising from small
perturbations of a coefficient, provide unambiguous and trans-
parent, explicit examples of structural instability of the climate
state (16). Only in the case when ∫ ∞

0 δαðsÞds is finite does a finite
climate state with nontrivial variability emerge.

The crucial issue addressed next is whether FDT has high skill
in predicting the response in this setting with transparent struc-
tural instability. For changes in dissipation, ~wð ~uÞ ¼ − ~u in 6 and
with the Gaussian equilibrium measure, peq, the linear response
operator from 8 is given by

RðtÞ ¼ NhAð ~uÞi − σ−2eq hAð ~uðtÞÞð ~u · ~uÞð0Þi: [13]

The shorthand notation for averages over the unperturbed equi-
librium measure from 5 has been utilized in 13. Functionals of
interest in climate change science include the mean, Að ~uÞ ¼ ~u,
the variance, Að ~uÞ ¼ u2i , and the total variance, Að ~uÞ ¼ ~u · ~u.
The mean response to changes in dissipation is the integral of
a triple correlation. This is, essentially, the same functional
needed as the linear response of the variance to a change of ex-
ternal forcing. Detailed numerical simulations (7) with the Krus-
kal–Zabusky model confirm the rapid decay of the integral of
such triple correlations and the excellent skill of FDT despite
structural instability. On the other hand, the total variance,
Að ~uÞ ¼ ~u · ~u, projects directly onto the key mechanism of struc-
tural instability in the present models. Recall that in the unper-
turbed system, energy is conserved so that ð ~u · ~uÞðtÞ ¼ ð ~u · ~uÞð0Þ
and the linear response operator for the total variance to changes
in dissipation from 13 becomes a constant, �R, independent of
time,

RðtÞ ¼ �R ¼ Nh ~u · ~ui − σ−2eq hð ~u · ~uÞðtÞð ~u · ~uÞð0Þi

¼ N2σ2eq − σ−2eq

�
∑
N

i¼1

hu4i i þ∑
N

j≠i

hu2i u2j i
�

¼ N2σ2eq − 3Nσ2eq − ðN2 −NÞσ2eq ¼ −2Nσ2eq: [14]

In the penultimate equality in 14, we have used the relation
hu4i i ¼ 3σ4eq valid for a Gaussian random variable. With 7 and
14, the linear response predicted by FDT of the total variance
to the changes in dissipation is given by

δh ~u · ~uiðtÞ ¼ −2Nσ2eqδ

Z
t

0
αðsÞds: [15]

Note the high skill of FDT in predicting the distinct climate
change scenarios: If ∫ t

0αðsÞds → −∞, FDT predicts climate
runaway whereas, if ∫ t

0αðsÞds → þ∞, FDT predicts continuing
decrease in variance in the climate. Furthermore, if ∫ ∞

0 αðsÞds
is finite, FDT predicts a finite climate change. In fact, the direct,
nonlinear ideal response can be calculated using 11 and com-
pared with 15. This nonlinear ideal response is

Z
~u · ~upδð ~u; tÞ − h ~u · ~ui ¼ Nσ2eqðe−2δ

R
t

0
αðsÞds − 1Þ: [16]

The leading order expansion of the nonlinear response 16 is
exactly the prediction from FDT. This provides quantitative evi-
dence of the high skill of FDT in predicting the manifestations of
structural instability in the present models. The models discussed
here are quite similar to the primary example of two-dimensional
decaying turbulence (16) with one important difference. In
decaying, two-dimensional turbulence it can be proved with full
mathematical rigor (17) that the attractor is always trivial and
concentrates at zero for a wide range of dissipative mechanisms.
The primary example from (16) describes irreducible imprecision
in the approach to a trivial attractor rather than structural
instability in a nontrivial attractor as presented here.

Stochastic Models for Low-Frequency Climate Dynamics,
Structural Instability, and FDT
There is recent interest in deriving reduced, stochastic models for
climate and extended-range weather prediction. An attractive
property of atmospheric, low-frequency variability is that it can
be efficiently described by just a few large-scale, teleconnection
patterns (20–22, and references therein). These patterns exert a
huge impact on surface climate and seasonable predictability. An
application of the blended response algorithm for FDT to the
climate change of the mean and variance of such low-frequency,
teleconnection patterns with high skill has been developed re-
cently in a barotropic model on the sphere with realistic orogra-
phy (12). Reduced stochastic models are an attractive alternative
for climate sensitivity studies via FDT (15) because they are com-
putationally much more efficient than state-of-the-art climate
models and have been shown to have comparable long-range pre-
diction skill (29, 30). Systematic, mathematical, stochastic-mode
reduction strategies (24–26) have been utilized recently to devel-
op normal forms for reduced, stochastic climate models (28). The
one-dimensional, normal form was applied in a regression strat-
egy in (28) for data from a prototype AOS model (20) to build
one-dimensional stochastic models for low-frequency patterns
such as the North Atlantic Oscillation (NAO) and the leading
principal component (PC-1) that has features of the Arctic Os-
cillation. These one-dimensional, normal form stochastic models
are utilized to show the high skill of FDTalgorithms despite de-
terministic, structural instability to both changes in external forc-
ing and dissipation parameters. Also illustrated below is another
facet of irreducible imprecision where higher order statistics of
the mean climate substantially effect the FDT response to the
changes in the dissipation parameter.

The canonical, one-dimensional stochastic models for low-
frequency variability (28) are given by the scalar stochastic
equation

dx ¼ ½F þ axþ bx2 − cx3�dtþ ðA − BxÞdW þ σdWA; [17]

with corresponding Fokker–Planck equation
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∂p
∂t

¼ −
∂
∂x

½ðF þ axþ bx2 − cx3Þp� þ 1

2

∂2

∂x2
½ðBx − AÞ2 þ σ2Þp�:

[18]

As developed (28), the Fokker–Planck equation in 18 has an ex-
plicit, smooth equilibrium distribution peqðxÞ with a Gaussian tail
provided that the physically imposed restriction, c > 0, is sat-
isfied. In this section, the notation x rather than u is utilized
to emphasize the scalar nature of the present problem. The ex-
plicit form of the PDF, peqðxÞ, will allow us to calculate explicit
forms of the ideal response operator to perturbations in forcing,
F, or the dissipation parameter, a, as well as explicit analytic ex-
pressions for the FDT linear response operator from 7, 8, and the
linear response operator for qG-FDT in 7 and 9 that utilizes only
the mean and variance statistics of the unperturbed climate in an
approximation.

One of the striking features of atmospheric general circulation
models is that there are different regimes of low-frequency
behavior despite uni-modal, nearly-Gaussian PDFs for the low-
frequency variables (21–23, 29, 30). The stochastic models from
17 are studied here in parameter regimes where this behavior oc-
curs and in the vicinity of where there is deterministic, structural
instability. The deterministic ODE associated with 17 is given by
_x ¼ F þ axþ bx2 − cx3. If b and c are fixed with c < 0, the two-
dimensional forcing dissipation parameter space, ða; FÞ, for the
ODE is naturally divided into two separate regions of dynamical
behavior with either one stable equilibrium or two stable and one
unstable equilibria. The dividing curve, B, between these two
different types of behavior is clearly a boundary with struc-
tural instability and is determined analytically by the for-
mula F ¼ −ab∕ð3cÞ − 2b3∕ð27c2Þ � 2cða∕ð3cÞ þ b2∕ð9c2ÞÞ3∕2. In
Table 1, we list five different cases of 17 that are studied below.
The first three cases correspond to a single stable equilibrium, S,
the boundary of structural instability, B, and the region with three
equilibria, U. The next two parameter values for 17 arise from the
physical regressed data for PC-1 and the NAO (28) that have
been discussed earlier. Note that the additive noise variance in
Table 1 for the first three cases has a comparable magnitude
to the noise variance in the regression plots for PC-1 and
NAO for the low frequency data. In Fig. 1, the uni-modal
PDF in the case S is shown as well as a piece of the time series
that shows the distinct regimes of behavior (29, 30) despite the
nearly-Gaussian statistics in the PDF that has a moderate skew-
ness. The PDFs for both B and U as well as the respective time
series show similar behavior. A key issue here is the skill of the
FDTalgorithm in this regime of deterministic structural instabil-
ity. An advantage of the present models is that the ideal response
to the changes in forcing or dissipation can be calculated analy-
tically through simple, quadrature involving moments of PDFs
and their derivatives with respect to parameters. In calculating
linear response theory, as predicted by FDT, we consider the
functionals AMðxÞ ¼ x and AVarðxÞ ¼ ðx − hxiÞ2 that correspond
to the mean and the variance response. In 6, the perturbation
in the external forcing, F, leads to the functional wFðxÞp ¼
−∂p∕∂x and the perturbation in the dissipation, a, correspond
to the functional waðxÞp ¼ −∂ðxpÞ∕∂x. Using the explicit PDF
from (28) required in 8 yields

BðFÞðxÞ ¼ −2
ðABþ FÞ þ ða − B2Þxþ bx2 − cx3

σ2 þ ðA − BxÞ2 and

BðaÞðxÞ ¼ −
A2 þ σ2 þ 2Fxþ ð2a − B2Þx2 þ 2bx3 − 2cx4

σ2 þ ðA − BxÞ2 : [19]

For the approximate qG-FDT, it is straightforward to calculate
BG in 9. The FDT and qG-FDT responses are computed by
integrating a long-time series using the second-order Milstein
method and computing the statistics “on the fly” (7). The com-
parison of the ideal response and the responses predicted by both
the FDT algorithm and qG-FDT are reported in Table 2 for the
response of the mean and variance to the changes in forcing or
dissipation. First, the deterministic structural instability plays no
role and there is high skill of the FDTresponse compared to the
exact ideal response for the mean and variance to both changes in
dissipation and forcing for all five examples. The reader should
note that the rare, high-percentage errors in Table 2 for S,B, and
U are a reflection of small values in the ideal response that are
remarkably well captured by FDT. For the physical low-frequency
patterns, PC-1 and NAO, the FDT response has high skill with
errors of, at most, a few percent for all four response scenarios.
The qG-FDT has high skill for the mean response to the change
in forcing and in all other cases except the mean response to
changes in dissipation for PC-1, the variance response to the
change in forcing for both PC-1 and the NAO, and the variance
response to the change in dissipation for NAO. The skill of
qG-FDT is much poorer for the cases S, B, and U. These results
all indicate that the subtle non-Gaussian statistics in the climate
(15) as reflected by the skewness in the equilibrium climate are
needed to get an accurate low-frequency climate response. This is
another instance of the impact of irreducible imprecision for the
present, idealized setting for climate change science. As shown
here and in other applications to climate science, the qG-FDT
algorithms often have very high skill for the mean response to
the change in forcing (8, 9, and 12) even when there are signifi-
cant non-Gaussian effects in the PDFs (15).

Validity of the FDT Response of Climate Variables Despite
Irreducible Imprecision at Fast Scales
We provide a definition of irreducible imprecision as applied to
the linear response framework, outline main factors affecting
irreducible imprecision, and design a test setup where the irre-
ducible imprecision is explicitly controlled through a time-scale
separation parameter in a model with large-scale, “climate”
variables and small-scale, fast, “unresolved” variables. We dem-
onstrate a remarkable precision of the linear response for the
climate variables despite irreducible imprecision from the fast
variables. The linear response operator from 7 can be computed
using both the FDT formulas in 8 and by a series of direct per-
turbations of a large statistical ensemble of solutions (6, 7, 10–12)
with different directions and magnitudes of the small, forcing

Table 1. Parameters and corresponding skewness and flatness for
model 17, A ¼ 0 and B ¼ 0 for all five cases

Case F A B C σ Skew Flat

S 1.8 0 −5.4 4
ffiffiffiffiffiffiffi
0.5

p
−1.35 8.56

B 2.0 0 −6.0 4
ffiffiffiffiffiffiffi
0.5

p
−1.50 10.8

U 2.2 0 −6.6 4
ffiffiffiffiffiffiffi
0.5

p
−2.05 17.5

PC-1 −0.005 −0.018 0.006 0.003 0.226 0.27 2.72
NAO −1.44 −0.55 −0.073 0.003 0.253 0.21 3.11

0 1 2

−0.5

0

0.5

1

p

x

A

100 150

−0.5

0

0.5

1

t

x

B

Fig. 1. (a) Solid line shows the equilibrium PDF for system 17 with par-
ameters from case S from Table 1, dotted line shows the Gaussian PDF with
the same mean and variance as the equilibrium PDF; (b) sample trajectory
with distinct regimes of behavior.
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parameter, in which case R is called the “ideal”, that is, directly
measured linear response operator that is used to verify the re-
sponse computed via an FDT formula. Clearly, due to the fact
that the ideal response is computed through direct perturbations
of the nonlinear dynamics, it can stay “linear” only for a limited
time that is determined by the extent to which the linearized dy-
namics around the unperturbed solution remain valid that is, in
turn, governed by the Lyapunov characteristic time of the dyna-
mical system. Thus, the time of validity of the ideal response is
proportional to the product of the Lyapunov characteristic time,
TLyap, and the logarithm of the magnitude of the external pertur-
bation δ ~f with a negative sign,Tvalidity ∼ −TLyap log ‖δ ~f‖, where
TLyap ¼ λ−11 , with λ1 being the first Lyapunov exponent. Thus,
for a fixed validity time of the ideal response (that for conveni-
ence we set to 1 here), the magnitude of external perturbations
must decrease exponentially with the first Lyapunov exponent,
‖δ ~f‖ ∼ e−λ1 . On the other hand, the external perturbation δ ~f can-
not be too small due to the natural noise in the statistical ensem-
ble of solutions (6, 7, and 10–12), whose level is inversely
proportional to the square root of the ensemble size N. For a
fixed perturbation/noise ratio, the size of the ensemble should
grow as N ∼ ‖δ ~f‖−2 ∼ expð2λ1Þ. From the computational stand-
point, the exponential growth of the ensemble size N places prac-
tical limits on the validity time of the ideal response proportional
to the Lyapunov characteristic time. There is an operational de-
finition of the irreducible imprecision for linear response:

Definition 1: The irreducible imprecision for linear response is the
practical inability to compute the ideal response beyond time
limits determined by the Lyapunov characteristic time, and, as
a result, to validate the predictions of FDTresponse formulas be-
yond these time limits.How much of an impact can irreducible
imprecision have on the linear response framework? Remark-
ably, there are known examples of the FDTresponse predictions,
such as the truncated Burgers–Hopf, the Kruskal–Zabusky, the
Lorenz 96, and the T21 models (7, 10–12), where irreducible
imprecision does not manifest itself due to the fact that the auto-
correlation decay times (that govern the active stage of the linear
response development) are comparable to the Lyapunov charac-
teristic time and the response is fully developed before the above
feature of irreducible imprecision starts having an impact.

On the other hand, contemporary climate models are typically
characterized by a set of fast “weather” variables that describe
small-scale interactions on a short time scale of a few hours,

nonlinearly coupled with the large-scale slow “climate” variables.
This setup causes the largest Lyapunov exponents and, conse-
quently, the characteristic Lyapunov time to be extremely short
and associated with the fast variables, whereas the response of the
mean climate state is tied to the decorrelation times of the slow-
climate variables. Therefore, it is likely that the typical time of
climate response development will be much longer than the
Lyapunov characteristic time, and the irreducible imprecision
noted above may potentially have a remarkable impact. To model
such a situation, we employ a nonlinear model with time-scale
separation explicitly controlled by an external parameter.

Controlled Irreducible Imprecision: A Test Setup
The inviscid full Lorenz 96 (IFL96) model is given by

_Xk ¼ Xk−1ðXkþ1 − Xk−2Þ − λ∑
J

j¼1

Yk;j and

_Yk;j ¼
1

ε
Yk;jþ1ðYk;j−1 − Yk;jþ2Þ þ λXk; [20]

where ε > 0, λ > 0, 1 ≤ k ≤ K , 1 ≤ j ≤ J, and appropriate peri-
odic boundary conditions are utilized (27). The IFL96 model
is characterized by two sets of variables: ~X is a set of slow-climate
variables of size K and ~Y is a set of fast weather variables of size
KJ with explicit time-scale separation parameter ε whereas λ is
the nonlinear coupling parameter between ~X and ~Y . In the cur-
rent work, we set K ¼ J ¼ 8, so that there are 72 variables in total
(8 Xk and 64 Ykj), and the value of the coupling parameter λ ¼ 1.
The IFL96 model in 20 satisfies 2 and preserves the quadratic
total energy. The classical Gaussian equilibrium state with zero
mean and uniform energy spectrum defines the climate statistical
equilibrium (7, 17). As a result, the qG-FDT formula in 7 and 9 is
exact for the IFL96 model and the development of the linear re-
sponse is governed by the decorrelation time. For the value of
ε ¼ 0.1, the Lyapunov characteristic time, TLyap ¼ 0.1356,
whereas the largest correlation time, Tcorr ¼ 0.6634. The
Lyapunov characteristic time is one order of magnitude shorter
than the decorrelation time suggesting that irreducible impre-
cision should obstruct validation of the linear response prediction
for times longer than one. To confirm this claim, in Fig. 2 we
show the intrinsic relative errors in the ideal response operator
(7, 10–12) and relative errors between the ideal and qG-FDT
response operator for the simplest linear response function
Að ~xÞ ¼ ~x that corresponds to the response of the mean state.

Table 2. Ideal, FDT, and qG-FDT mean and variance response to the change in forcing or dissipation
with the corresponding percentage errors for the five cases given in Table 1

R Case Ideal FDT qG-FDT FDT % error qG-FDT % error

RðFÞ
M

S 0.1814 0.1827 0.3197 0.70 76
B 0.1621 0.1633 0.3425 0.72 111
U 0.1555 0.1591 0.8655 2.29 457

PC-1 40.54 40.52 41.84 0.05 3.21
NAO 5.41 5.46 5.51 0.93 1.84

RðaÞ
M

S 0.0533 0.0536 −0.0937 0.57 276
B 0.0486 0.0499 −0.1639 2.55 437
U 0.0401 0.0334 −0.8988 16.71 2339

PC-1 6.13 6.66 16.91 8.69 176
NAO −71.00 −71.16 −71.37 0.22 0.51

RðFÞ
Var

S −0.0522 −0.0540 −0.2331 3.4 346
B −0.0490 −0.0463 −0.3218 5.5 557
U −0.0630 −0.0702 −1.2797 11.5 1932

PC-1 11.23 11.24 16.02 0.08 42
NAO 0.470 0.473 0.715 0.72 52

RðaÞ
Var

S 0.0083 0.0071 0.157 15 1798
B 0.0104 0.0107 0.291 3.1 2714
U 0.0207 0.0304 1.56 47 7431

PC-1 36.25 36.16 34.30 0.23 5.4
NAO −5.185 −5.186 −8.1 0.03 56
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Observe that the error growth between the ideal and qG-FDT
response correlates to a very high extent with the error growth
in the ideal response operator that in turn, is governed by the
Lyapunov characteristic time (errors start growing after the time
interval of roughly TLyap ¼ 0.1356 passes). By the time the linear
response is fully developed, which is beyond the decorrelation
time Tcorr ≈ 1, the intrinsic errors in the ideal response operator
are about 80%, which is a clear manifestation of irreducible
imprecision for the linear response as sketched in the Definition.
Additionally, the physical space correlations (7, 17) between the
ideal and qG-FDT response operators, show only moderate cor-
relation with value around 0.6.

Validity of Linear Response for Climate Variables
We have just demonstrated that irreducible imprecision obstructs
the computation of the ideal linear response for the full set of

IFL96 variables. However, in practical situations for climate
change, one is interested only in the response of the slow-climate
variables, with the same set of variables being forced by a change
of external parameters. In Fig. 2 we show the errors in both the
ideal response operator and between the ideal and qG-FDT re-
sponse operator, restricted to the ~X (slow climate) variables in
both forcing and response. Remarkably, in this case the errors
in the ideal response never exceed 12% over the full measured
response time interval of five time units (that is about 37 times the
Lyapunov characteristic time), whereas the errors between the
ideal and qG-FDT response only reach magnitudes of about
20%. In addition, the physical space correlations between the
ideal and qG-FDT response operators are about one, which is
a perfect correlation. In Fig. 2, we also show two snapshots of
linear response operators for the X-variables at times t ¼ 2
and t ¼ 4, both significantly beyond the longest correlation time
in the system where one can observe that there is, visually, a good
correspondence between the ideal and qG-FDT response opera-
tors. This is a vivid demonstration of the fact that irreducible im-
precision does not necessarily affect the low-frequency response
of the slow-climate variables, while clearly obstructing the com-
putation of the response for the full set of variables.

Conclusions
Recently, it has been suggested (16) that there is irreducible im-
precision in comprehensive AOS models that manifests itself as
structural instability in the climate statistics and that can signifi-
cantly hamper the skill of these computer models for climate
change projections. A systematic approach to deal with this
irreducible imprecision is advocated through algorithms based
on FDT.
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Fig. 2. Upper left: errors in the ideal response and between the qG-FDT and
ideal response, ε ¼ 0.1 and λ ¼ 1. Upper right: the physical space correlations
between the ideal response and qG-FDT for the same regime. Lower left and
right: snapshots of the ideal and qG-FDT response operators for X-variables at
time t ¼ 2 and t ¼ 4, respectively.

586 ∣ www.pnas.org/cgi/doi/10.1073/pnas.0912997107 Majda et al.

10.1175/2009JAS3264.1
10.1175/2009JAS3264.1
10.1175/2009JAS3264.1

