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Understanding NP-complete problems is a central topic in computer
science (NP stands for nondeterministic polynomial time). This is
why adiabatic quantum optimization has attracted so much atten-
tion, as it provided a new approach to tackle NP-complete problems
using a quantumcomputer. The efficiency of this approach is limited
by small spectral gaps between the ground and excited states of
the quantum computer’s Hamiltonian. We show that the statistics
of the gaps can be analyzed in a novel way, borrowed from the
study of quantum disordered systems in statistical mechanics. It
turnsoutthatduetoaphenomenonsimilartoAndersonlocalization,
exponentially small gaps appear close to the end of the adiabatic
algorithmfor large randominstancesofNP-completeproblems. This
implies that unfortunately, adiabatic quantum optimization fails:
The system gets trapped in one of the numerous local minima.

One of the central concepts in computational complexity
theory is that of NP (nondeterministic polynomial time)

completeness (1). A computational problem belongs to the class
NP if its solution can be verified in a time at most polynomial in
the input size N; i.e., the verification requires not more than cNk

computational steps, where c and k are independent ofN. An NP-
complete problem satisfies a second criterion: Any other problem
in the class NP can be reduced to it in polynomial time. Remark-
ably, such problems exist, many of them being of a great practical
importance. The question of whether NP-complete problems are
“easy to solve,” or in other words whether they may be solved in
polynomial time, is one of the most fundamental open problems
in computer science: This is the famous “P¼? NP” question (2). It
is commonly believed, however, that it is not the case, i.e., that
solving such a problem requires a computational time that is
exponential in N.

Adiabatic Quantum Optimization
The discovery of an efficient (polynomial time) quantum algo-
rithm for the factorization of large numbers—a problem in NP
but not believed to be NP complete—is a milestone in quantum
computing (3), as no algorithm is known to solve this problem
efficiently on a classical (nonquantum) computer. However, this
success was not extended to NP-complete problems. That was
why the proposal of Farhi et al. (4) to use adiabatic quantum
optimization (AQO) to solve NP-complete problems has attracted
much attention since initial numerical simulations suggested such
a possibility (5).

The basic idea of AQO is as follows: Suppose that the solution
of a computational problem P can be encoded in the ground state
(GS) of a Hamiltonian ĤP. To implement AQO one needs to con-
struct a physical quantum system that is governed by a Hamilto-
nian ĤðsÞ ¼ ð1 − sÞĤ0 þ sĤP, where s is a tunable parameter, and
Ĥ0 is a Hamiltonian with a known and easy-to-prepare ground
state. The idea is to start with s ¼ 0, initialize the system in
the ground state of Ĥð0Þ ¼ Ĥ0, and increase s with time as
s ¼ t∕T. According to the adiabatic theorem (6), slow enough
variation of the parameter s ¼ sðtÞ keeps the system in the ground
state of the Hamiltonian Ĥ½sðtÞ� at any time t. Therefore, if T is
large enough, at t ¼ T the system would find itself in the ground
state of Ĥð1Þ ¼ ĤP, and the problem would be solved. This model

has since been shown to be equivalent to the standard (circuit)
model of quantum computing (7). Of course, as long as the com-
putational time T remains finite, there is a nonzero probability
that the system would undergo a Landau–Zener transition (6)
and end up in an excited state. In order to maintain the excitation
probability less than ϵ, the adiabatic condition requires that
T ∼ 1

ϵΔ2, where ΔðsÞ ¼ EES − EGS is the energy gap between the
ground state and first excited state (ES) of the Hamiltonian
ĤðsÞ. Therefore AQO is not efficient when Δ is small. More pre-
cisely, the adiabatic quantum approach to NP-complete problems
would beat known classical algorithms (which require exponential
time) if the minimal value of the gap scales as an inverse power of
the problem size N.

Previously, it was shown that the gap can become exponentially
small under specific conditions, such as a bad choice of initial
Hamiltonian (8, 9), or for specifically designed hard instances
(10, 11). More recently, it was argued that the presence of a
first-order phase transition could induce an exponentially small
gap, and this effect was demonstrated for a particular instance
of an NP-hard problem (12). While these examples show that
small gaps can occur for specific instances of NP-complete pro-
blems, one could hope that this is not the typical behavior;
i.e., for randomly generated instances the gap could be small only
with very low probability. This hope followed from numerical
simulations (5, 13, 14) where the minimum gap seemed to
decrease only polynomially for small instances, up to N ¼ 124
for the latest simulations (15). In this paper we show that this
scaling does not persist for larger N. It turns out that as
N → ∞, the typical value of the minimal gap for random
instances decays even faster than exponentially. As a result,
the probability for AQO to yield a wrong solution in this limit
tends to unity. Note that in refs. 16 and 17, the quantum cavity
method and replica symmetry breaking were used to show that a
first-order phase transition between a quantum paramagnet
phase and a spin glass phase may occur for some problems during
the adiabatic evolution, leading to an exponentially small gap.
While this also implies the failure of adiabatic quantum optimi-
zation for these problems, the small gap predicted by these meth-
ods, which are quite different from ours, is also due to a very
different phenomenon. Here, we show that exponentially small
gaps appear due to avoided crossings between levels correspond-
ing to local and global minima, similar to ref. 12. We show here
that this effect is not just an accident occurring for specific
instances, but that it is generic for random instances of NP-
complete problems. This effect was also studied for randomly
generated planted instances of 3-satisfiability (3-SAT), by use
of quantum Monte Carlo simulations (18). One important differ-
ence of our approach is to show the relevance of Anderson
localization to the study of adiabatic quantum optimization.
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Anderson Localization
The appearance of exponentially small spectral gaps can be natu-
rally attributed to the Anderson localization (AL) of the eigen-
functions of ĤðsÞ in the space of the solutions. Originally, AL
implied that the wave function of a quantum particle in d-dimen-
sional space (d ¼ 1;2;3;…) subject to a strong enough disorder
potential turns out to be spatially localized in a small region
and decays exponentially as a function of the distance from this
region. Accordingly the probability for the particle to penetrate
through a large disordered region is suppressed exponentially.

Recall that the gap Δ cannot vanish at any s without a special
symmetry reason. This is the famous Wigner-von Neumann non-
crossing rule (19): The curves that describe the s dependence of
two eigenenergies do not cross on the ðE;sÞ plane. This so-called
level repulsion follows from the consideration of a reduced 2 × 2
Hamiltonian that describes two anomalously close energy states
and neglects the rest of the spectrum. Let E1 and E2 be the diag-
onal matrix elements of the Hamiltonian, and V 12 ¼ V �

21 be its
off-diagonal matrix elements. We then find the energy gap to be

Δ ¼ EES − EGS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE1 − E2Þ2 þ jV 12j2

q
: [1]

Now suppose that E1ðsÞ and E2ðsÞ become equal at s ¼ sc, as
depicted in Fig. 1. One can see that Δ > 0 even for s ¼ sc. This
behavior is known as a level anticrossing. The minimal value of
the energy gap is determined by the off-diagonal matrix element,
i.e., Δmin ¼ jV 12j, which is exponentially small under AL condi-
tions.Accordingly the energy level repulsion between the localized
states should be exponentially small in the spatial distance. Fig. 1
illustrates this situation schematically. At a certain interval of s
close to sc the difference E1ðsÞ − E2ðsÞ is smaller or of the order
of the tunneling matrix element V 12. It is the interval where the
anticrossing takes place. Since V 12 depends exponentially on
the distance between the wells, both the width of the anticrossing
interval and the minimum gap turn out to be exponentially small.

The concept of AL was introduced more than 50 years ago in
order to describe spin and charge transport in disordered solids
(20). Since then AL was found to be relevant for a variety of phy-
sical situations. It also turned out to exist and make physical sense

in a much broader class of spaces thanRd. Below we demonstrate
that a phenomenon analogous to AL on the vertices of the N-di-
mensional cube naturally appears in connection with AQO.

Exact Cover 3
In order to explain the connection between the AQO approach to
NP-complete problems and Anderson localization, we pick a
particular NP-complete problem known as Exact Cover 3
(EC3), the same problem that was used for the early numerical
simulations of AQO (5). However, we believe that this analysis
can be extended to any NP-complete problem. EC3 can be for-
malized in the following way. Consider N bits x1;x2;…;xN , which
take values 0 or 1. An instance of EC3 consists ofM triplets of bit
indices ðic;jc;kcÞ (the clauses), where each clause is said to be
satisfied if and only if one of the corresponding bits is 1 and
the other two are 0. A solution of a particular instance of EC3
is an assignment of the bits x ¼ ðx1;x2;…;xNÞ, which satisfies
all of the clauses. This problem can be assigned a cost function
given by

f ðxÞ ¼ ∑
c

ðxic þ xjc þ xkc − 1Þ2; [2]

such that each solution has zero cost and all other assignments
have a positive cost.

We consider a standard distribution of random instances,
where an instance is built by picking theM clauses independently,
each clause being obtained by picking 3 bit indices uniformly at
random. The hardness of such random instances is characterized
by the clauses-to-variables ratio α ¼ M∕N. There are two char-
acteristic values of α: the clustering threshold αcl and the satisfia-
bility threshold αs (21). For α < αcl, the density of the solutions
is high and essentially uniform, while for α > αcl the solutions
become clustered in the solution space with different clusters
remote from each other (the distance between two assignments
is the so-called Hamming distance, which is defined as the num-
ber of bits in which they differ). As α increases from αcl to αs, the
clusters become smaller and the distance between them in-
creases. For α > αs, the probability that the problem is satisfiable
vanishes in the limit N;M → ∞. It has been shown (22) that
αs ≈ 0.6263. We will be interested in instances with α close to
αs, which accept only a few isolated solutions and are therefore
hard to solve. More precisely, known classical algorithms cannot
solve such hard instances for a number of bits N more than a few
thousands, so that this is the regime where an efficient quantum
algorithm would be particularly desirable.

Methods and Results
Adiabatic QuantumAlgorithm. In order to define an adiabatic quan-
tum algorithm for EC3, we need to choose ĤP and Ĥ0. The pro-
blem Hamiltonian ĤP for an EC3 instance can be obtained from
the above cost function by first replacing xi by the Ising variables
σðiÞz ¼ 1 − 2xi ¼ �1 and then substituting σðiÞz by the Pauli Z

operators σ̂ðiÞz , thus replacing the bits by qubits. The problem
Hamiltonian becomes

ĤP ¼ MÎ −
1

2∑
N

i¼1

Biσ̂
ðiÞ
z þ 1

4∑
N

i;j¼1

Jijσ̂
ðiÞ
z σ̂ðjÞz ; [3]

where Bi is the number of clauses that involve the bit i, Jij is the
number of clauses where the bits i and j participate together, and
Î is the identity operator. For Ĥ0, we make the conventional
choice Ĥ0 ¼ −∑iσ̂

ðiÞ
x , which corresponds to spins in the magnetic

field directed along the x axis (Pauli X operators). For us it
will also be convenient to modify the Hamiltonian ĤðsÞ as

Fig. 1. Schematic representation of a level anticrossing. The energies of two
quantum states jΨ1i and jΨ2i localized in distant wells can be fine-tuned by
applying a smooth additional potential. (A) Before the crossing, the ground
state is jΨ2i with energy close to E2ðsÞ; i.e., for s− < sc, we have that
E1ðs−Þ > E2ðs−Þ, so that jGSðs−Þi ¼ jΨ2i. (B) After the crossing, the ground
state becomes jΨ1i with energy close to E1ðsÞ; i.e., for sþ > sc, we have that
E1ðsþÞ < E2ðsþÞ, so that jGSðsþÞi ¼ jΨ1i. The ground states before and after
the crossing have nothing to do with each other. At a certain interval of s
close to sc , the anticrossing takes place and the ground state is a linear com-
bination of jΨ1i and jΨ2i.
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ĤQCðλÞ ¼ ĤP þ λĤ0. The parameter λ ¼ 1−s
s changes adiabati-

cally from λ ¼ þ∞ at the beginning t ¼ 0 to λ ¼ 0 at t ¼ T.

Connection to Anderson Localization.We can now see the relevance
of AL to the quantum system described by ĤQC. Note that this
Hamiltonian also describes a single quantum particle that is mov-
ing between the vertices of an N-dimensional hypercube. Indeed,
each vector σ ¼ ðσð1Þz ;σð2Þz ;…;σðNÞ

z Þ, where σðiÞz ¼ �1, determines a
vertex of the hypercube, which is body-centered at the origin of
the N-dimensional space. Let jσi denote the quantum state of a
particle localized at a site σ. The full set of these states forms a
basis, in which the first term of the Hamiltonian is diagonal. Since
the operator σ̂ðiÞx transforms the state jσi into its nearest neighbor
in the ith direction, the second term of ĤQC describes a hopping
of this fictitious particle between the nearest neighbors (n.n.)

ĤQCðλÞ ¼ ∑
σ

EPðσÞjσihσj þ λ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
disorder

∑
σ;σ0n:n:

jσihσ0j: [4]

Each on-site energy EPðσÞ is nothing but the cost function f ðxÞ
of the corresponding assignment σ. For random instances, the
on-site energies are obviously also random, introducing disorder
in theHamiltonian.Hence, Eq. 4 describes thewell-knownAnder-
son model, which was used to demonstrate the phenomenon of
localization (20). The only difference from more familiar situa-
tions is that lattices in d-dimensional space, which have Ld sites
where L ≫ 1 is the system size, are substituted by the N-dimen-
sional hypercube with 2N sites, where N ≫ 1.

Anticrossings in AQO.Now we are ready to discuss the fundamental
difficulties that AQO faces. We will show that (i) the anticrossings
of the ground state with the first excited state happen with high
probability and (ii) that the anticrossing gaps in the limit N → ∞
are even less than exponentially small.

Let us start with the first statement. An EC3 instance with α <
αs typically has several solutions σ with EPðσÞ ¼ 0. If α is close to
αs, there are few solutions at a distance of order N of each other.
The presence of multiple solutions implies that the ground state
of ĤQCðλ ¼ 0Þ ¼ ĤP is degenerate. Note that this degeneracy
does not contradict the noncrossing rule: The symmetry is man-
ifested by the commutation of ĤP with each of the operators σ̂ðiÞz .
The second term in Eq. 4 violates this symmetry, so that the
degeneracy is raised at λ > 0.

Consider nowaparticular instancewithM − 1 clauses accepting
two solutions σ1 and σ2 that are separated by n ∼N spin flips.
When λ adiabatically changes from zero to a small but finite
value, the solutions evolve into eigenstates of the Hamiltonian,
jΨ 1;λi and jΨ 2;λi with the energies E1ðλÞ and E2ðλÞ. According

to the noncrossing rule, a degeneracy of these two states at a
finite λ is improbable; i.e., the Ĥ0 term in ĤQC splits the ground
state degeneracy. This situation is sketched in Fig. 2A. Suppose
that E2ðλÞ < E1ðλÞ; i.e. jΨ 2;λi is the unique ground state of the
Hamiltonian ĤQCðλÞ. If we now add one more clause to the
existing M − 1 ones, i.e., we add a term ðxiM þ xjM þ xkM − 1Þ2 to
the cost function leading to Hamiltonian ĤP, both jσ1i and jσ2i
remain eigenstates, but their eigenenergy can increase by either
1 or 4. With a nonzero probability the last clause is satisfied by
σ1 but not by σ2, i.e., ~EPðσ1Þ ¼ 0 while ~EPðσ2Þ > 0, where ~EPðσÞ
is the cost function of the new instance. Accordingly jσ1i rather
than jσ2i is the new ground state at λ ¼ 0. At the same time
jΨ 2;λi can still remain the ground state at large enough λ if
~E1ðλÞ > ~E2ðλÞ, as shown on Fig. 2B. Such a situation corresponds
to the anticrossing of jΨ 1;λi and jΨ 2;λi at certain λ, as previously
described in Fig. 1. Note that the addition of a clause to the cost
function increases any eigenenergy of ĤQCðλÞ by less than 4. To
satisfy the condition ~E1ðλÞ > ~E2ðλÞ, it is thus sufficient to achieve
a large enough splitting between the eigenvalues of the instance
with M − 1 clauses: E1ðλÞ − E2ðλÞ > 4. It turns out that if
N ≫ 1, this happens when λ is small and one can use perturbation
theory in λ.

Perturbation Theory.Let us consider the eigenstate that in the limit
λ → 0 evolves to jσi. At small λ its energy can be expanded in a
series

Eðλ;σÞ ¼ EPðσÞ þ ∑
∞

m¼1

λ2mFðmÞðσÞ: [5]

We can show that each term in this sum scales linearly in N. For
the energy EPðσÞ of an arbitrary assignment, we immediately have
that 0 ≤ EP < M ¼ αN. As for the coefficients FðmÞðσÞ, the clus-
ter expansion (23) of the Hamiltonian ĤQC implies that they may
be expressed as a sum of ∼N statistically independent terms, each
being of order 1. The key element to prove this is that since
M∕N ¼ α is constant, with overwhelming probability each bit
participates in a finite number of clauses as N → ∞. As a result,
all the coefficients Bi and Jij in Eq. 3 are also finite*:
Bi ¼ 1

2
∑jJij ¼ Oð1Þ. In particular, when σ is a solution we obtain

Fð1ÞðσÞ ¼ ∑iB
−1
i , which is therefore of order N. This statement is

valid for FðmÞðσÞ with arbitrary finite m > 1: All of these coeffi-
cients can be presented as a sum ofOðNÞ random terms, each one
being of order unity. Let us now consider the perturbative expan-

Fig. 2. Schematic representation of the creation of a level anticrossing. (A) Before adding the clause, we have two assignments that are both in the ground
state at λ ¼ 0 but due to the no-crossing rule, at λ > 0 we have E1ðλ�Þ − E2ðλ�Þ > 4. (B) By adding a clause satisfied by solution 1 but not solution 2, we create a
level anticrossing since ~E1ð0Þ < ~E2ð0Þ but ~E1ðλ�Þ > ~E2ðλ�Þ. Insets: (A) If the clause is violated by the wrong solution, then no anticrossing appears between these
two levels. (B) However, other low-energy levels can create other anticrossings, leading to multiple small gaps.

*Throughout this article, we use the notation Oðf ðNÞÞ to denote a function that scales as
f ðNÞ when N → ∞, as is common in the physics literature. Note that this corresponds to
the notation Θðf ðNÞÞ in the mathematics and computer science literature.
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sion for the energy splitting between two solutions. Similarly to
Eq. 5, we obtain

E1ðλÞ − E2ðλÞ ¼ ∑
∞

m¼2

λ2mFðmÞ
1;2 ; [6]

where FðmÞ
1;2 ¼ FðmÞðσ1Þ − FðmÞðσ2Þ is a sum ofOðNÞ terms of order

1. Each of the terms is random with a zero mean, and hence the
sums FðmÞ

1;2 average to zero as N → ∞. Therefore, it is ðFðmÞ
1;2 Þ2

rather than FðmÞ
1;2 that is proportional to N. We thus arrive at

the conclusion that

jE1ðλÞ − E2ðλÞj ¼
ffiffiffiffi
N

p
∑
m

λ2mf ðmÞ; [7]

where the coefficients f ðmÞ ¼ Oð1Þ can be evaluated by the cluster
expansion (23). We have seen that Fð1ÞðσÞ ¼ ∑iB

−1
i for any solu-

tion σ, so that Fð1Þ
1;2 ¼ 0. However, terms withm > 1 do not vanish,

making the splitting finite. In Fig. 3, we show the results of the
statistical analysis of the numerical calculations of the coefficients
ðFð2Þ

1;2Þ2 and ðFð3Þ
1;2Þ2, with linear fits confirming their scaling OðNÞ.

For small λ, we can restrict ourselves to the leading term (m ¼ 2)
in Eq. 7. Accordingly in the N → ∞ limit, the splitting jE1ðλÞ −
E2ðλÞj exceeds 4 as long as λ > λ�, with

λ� ¼
ffiffiffi
2

p
ðf ð2ÞÞ−1∕4N−1∕8; [8]

and λ� ≪ 1 so that we can neglect higher orders, λ� ≪ 1 (the
validity of this approximation is discussed in the next paragraph).
From Eq. 8, it follows that the anticrossing probability for the
instance with M clauses is finite provided that λ ≥ λ� ∼N−1∕8.

How big is the gap Δ of such an anticrossing? As explained
above, we can evaluate the gap by considering the matrix element
V 12 between the states jΨ 1;λi and jΨ 2;λi corresponding to the two
assignments, at the value λ where the anticrossing occurs. Note
that if the two assignments σ1 and σ2 satisfying the (M − 1)
clauses are separated by a distance (number of flips) n, this matrix
element appears only at the nth order of the perturbation theory;
i.e., it is proportional to λn:

V 12 ¼ λn∑
tr

½Πn
k¼1EPðσðkÞtr Þ�−1 þOðλnþ1Þ; [9]

where the sum is over all “trajectories” tr—all possible orders of
the n spin flips needed to transform σ1 into σ2, σ

ðkÞ
tr is the assign-

ment along a particular trajectory that appears after k flips, and
EPðσðkÞtr Þ is the cost function of this assignment. Therefore, we
can estimate the matrix element and thus the anticrossing gap
as V 12 < wðnÞλn. The prefactor wðnÞ reflects the fact that many
(∼n!) trajectories contribute to the sum in Eq. 9. For a typical tra-
jectory EPðσðkÞtr Þ ¼ OðkÞ for k < n∕2 and EPðσðkÞtr Þ ¼ Oðn∕2 − kÞ
for k > n∕2. As a result the product of EPðσðkÞtr Þ in Eq. 9 is also
∼n!. The factorials thus cancel each other, and wðnÞ cannot
increase faster than An with some constant A ∼ 1. Therefore,
V 12 < ðAλÞn. Combining this with Eq. 8, we see that an anticross-
ing at λ close to λ� yields the minimum gap as small as
Δmin ∼ exp½−ðn∕8Þ lnðN∕N0Þ�, where N0 ¼ 16A8ðf ð2ÞÞ−2 ¼ Oð1Þ.
Within the clustering phase (αcl < α < αs), the expected distance
n between solutions scales as vðαÞN, where vðαÞ is a constant that
depends only on the clauses-to-variable ratio α. Therefore, we
obtain the final form of the minimal gap estimation

Δmin ∼ expf½−vðαÞN∕8� lnðN∕N0Þg: [10]

One can see that as N → ∞, the gap indeed decreases even faster
than an exponential—statement (ii). This implies that the adia-
batic computation time exceeds expðNÞ. In Fig. 4, we have plotted
an anticrossing for a particular instance with N ¼ 200 generated
during our numerical simulations. The figure shows two energy
levels (estimated by fourth-order perturbation theory) corre-
sponding to assignments separated by 60 bit flips, and crossing
at λ ≈ 0.51.

Discussion
Applicability of the Perturbation Theory. Our main result, the esti-
mation of the minimal gap (10), is based on the perturbative
expansion for the energies (Eq. 5) and the matrix element V 12

(Eq. 9). Is the perturbation theory in λ always applicable? At first
sight Eq. 9 becomes meaningless if EP ¼ 0 for any of the inter-
mediate assignments σðkÞtr . In this case there is an avoided crossing
between the states corresponding to the assignments σ1 and σðkÞtr
(such as in Eq. 1), and formally perturbation theory fails in the
vicinity of this anticrossing point. This apparent difficulty can
be overcome by considering only a finite time T for the evolution.

Fig. 3. Statistics of the square of the difference in energies of two solutions

up to fourth order, i.e. ðFð2Þ1;2Þ2. Linear fits confirm that the square of the en-
ergy difference scales as OðNÞ. Inset: Statistics of the sixth-order correction of

the splitting ðFð3Þ1;2Þ2. Each data point is obtained from 2,500 random instances

of EC3 with α ≈ 0.62. Linear fits for the mean yield f ð2Þ ≈ 0.18 and f ð3Þ ≈ 0.65.

Fig. 4. Simulation of a level anticrossing for a random instance with N ¼ 200

bits and α ≈ 0.62, obtained by fourth-order perturbation theory. Shown are
the energies of two assignments after adding a clause to the final Hamilto-
nian. The added clause is satisfied by assignment 1 but not by assignment 2. A
level crossing is shown similar to the cartoon in Fig. 2. Inset: To make the
crossing more apparent, we plotted the energy differences E1 − E2 and
E2 − E1. The crossing occurs at λ ≈ 0.51, and the corresponding assignments
are at distance n ¼ 60 from each other.
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This is equivalent to adding imaginary parts iη ≈ i∕T to the
energies. For theAQOalgorithm, it is the computation timeT that
determines η. In the limit N → ∞, we have that T → ∞ and thus
η → 0. This is the limit that was shown to be relevant for the
localization problem (20, 24). The celebrated discovery of Ander-
son was that if the limit η → 0 is taken after the volume (here N)
tends to infinity, and λ is small enough i.e., λ < λcr, the spectrum of
the Hamiltonian described in Eq. 4 remains discrete (all states are
localized) and thus the second term in Eq. 4 (the kinetic energy
term) can be treated perturbatively. As soon as λ > λcr, there
appears a strip of extended states in the middle of the energy band
that widens as λ increases further. States within this strip are not
perturbative because the number of the trajectories connecting
two points in a d-dimensional space (for finite d) increases expo-
nentially with distance. The large number of terms in the expan-
sions such as Eq. 9 overwhelms the smallness of λn, and the
perturbation series thus diverges for λ > λcr. For a d-dimensional
space, the critical value λcr is believed to be (in our units) of the
order of λcr ∼ 1∕ log d (25, 26). We have seen that the AQO algo-
rithm for problems such as EC3 can be mapped to the Anderson
model on an N-dimensional hypercube. Then, the number of tra-
jectories increases with the length n as n! ∼ nne−n, i.e., even faster
than an exponential. However, as we already mentioned, the nn

factor cancels with the same factor in the products of the energy
in the denominators ofEq. 9. Accordingly, λcr can still be estimated
as λcr ∼ 1∕ logN, which, together with Eq. 8, implies that anticross-
ings appear for λ� ≪ λcr when N ≫ 1. Moreover, at λ < λcr all of
the states are supposed to be localized. The AQO algorithm
involves only low-energy states, which remain localizedmuch long-
er than the middle-band states with the energies∼N. Therefore, it
is quite likely that the exponentially small gaps appear even
at λ ∼ 1.

Conclusions
We finish our discussion with the following observation. We mon-
itored two assignments that satisfied M − 1 clauses and added an
extra clause to create a small gap at finite λ. Of course, for ran-
domly selected clauses this happens only with a finite probability,
and the situation sketched in the inset in Fig. 2A is also possible.
One could thus hope (18) that the AQO algorithm can find the
solution with a sizable probability. Unfortunately, the situation is
not so optimistic when we take into account all low-energy states.
Indeed, let us adopt the most conservative limitation on the per-
turbative approach λcr ∼ 1∕ logN and consider the spectrum at
λ� ≪ λcr ∼ 1∕ logN. According to Eq. 7, all states in the energy
interval ½0;ϵ� with ϵ ∼

ffiffiffiffi
N

p
λ4 ≫ 1 have similar chances to evolve

into the ground state at λ ¼ 0. This means that typically the
ground state undergoes νðϵÞ anticrossings [participates in νðϵÞ
anticrossing gaps] as the parameter evolves from 0 to λ (see
the inset of Fig. 2B). Here νðϵÞ is the number of states, whose
energies at the given λ differ from the ground state energy by less
than ϵ. Taking into account that νðϵÞ increases with ϵ exponen-
tially and that the probability to completely avoid anticrossings
(the probability to have a gap of size ϵ separating the ground state
from the rest of the spectrum) is exponentially small in νðϵÞ, we
conclude that this probability is indeed negligible. Therefore,
these findings suggest that there is no chance of obtaining the
solution of the problem in polynomial time using the AQO algo-
rithm for random instances of the Exact Cover 3 problem. We
also believe that the methods described in this paper can be
applied to other similar NP-complete problems, such as 3-SAT.
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