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The capacity to collect fingerprints of individuals in online media
has revolutionized the way researchers explore human society.
Social systems can be seen as a nonlinear superposition of a multi-
tude of complex social networks, where nodes represent indivi-
duals and links capture a variety of different social relations.
Much emphasis has been put on the network topology of social
interactions, however, the multidimensional nature of these inter-
actions has largely been ignored, mostly because of lack of data.
Here, for the first time, we analyze a complete, multirelational,
large social network of a society consisting of the 300,000 odd
players of a massivemultiplayer online game.We extract networks
of six different types of one-to-one interactions between the
players. Three of them carry a positive connotation (friendship,
communication, trade), three a negative (enmity, armed aggres-
sion, punishment). We first analyze these types of networks as
separate entities and find that negative interactions differ from
positive interactions by their lower reciprocity, weaker clustering,
and fatter-tail degree distribution. We then explore how the inter-
dependence of different network types determines the organiza-
tion of the social system. In particular, we study correlations and
overlap between different types of links and demonstrate the ten-
dency of individuals to play different roles in different networks.
As a demonstration of the power of the approach, we present the
first empirical large-scale verification of the long-standing structur-
al balance theory, by focusing on the specific multiplex network of
friendship and enmity relations.

complex networks ∣ multiplex relations ∣ quantitative sociology

Human societies can be regarded as large numbers of locally
interacting agents, connected by a broad range of social and

economic relationships. These relational ties are highly diverse in
nature and can represent, e.g., the feeling a person has for an-
other (friendship, enmity, love), communication, exchange of
goods (trade), or behavioral interactions (cooperation or punish-
ment). Each type of relation spans a social network of its own. A
systemic understanding of a whole society can only be achieved by
understanding these individual networks and how they influence
and coconstruct each other. The shape of one network influences
the topologies of the others, as networks of one type may act as a
constraint, an inhibitor, or a catalyst on networks of another type
of relation. For instance, the network of communications poses
constraints on the network of friendships, trading networks are
usually constrained to positively connoted interactions such as
trust, and networks representing hostile actions may serve as a
catalyst for the network of punishments. A society is therefore
characterized by the superposition of its constitutive socioeco-
nomic networks, all defined on the same set of nodes. This super-
position is usually called multiplex, multirelational, multimodal,
or multivariate network (see Fig. 1). The study of small-scale mul-
tiplex networks has a long tradition in the social sciences (1) and
has been applied to areas such as homophily in social networks
(2), the effect of combined interactions on an agent’s behavior
(3), and the nontrivial interrelation between family and business
networks (4). Multiplexity is thought to play an important role

in the organization of large-scale networks. For example, the ex-
istence of different link types between agents explains the overlap
of community structures observed in social networks, where
nodes may belong to several communities, each associated to
one different type of interaction (5, 6). Methodological work
on multiplex networks includes the development of multiplex
community detection (7), clustering (8), and other network
analysis algorithms (9). The role of multiple relation types in
measured social networks has recently been investigated across
communication media (10), in an online game (11), as well as
in ecological networks (12).

Traditional methods of social science, such as small-scale ques-
tionnaire-based approaches, get more and more replaced by
automated methods of data collection which allow for entirely
different scales of analysis (13–15). This change of scale has
opened new perspectives and has the potential to radically trans-
form our understanding of social dynamics and organization (16).
The empirical verification of social theories such as the strength
of weak ties (17, 18) become possible with hitherto unthinkable
levels of precision. However, this large-scale perspective suffers
from the drawback of a relatively coarse-grained representation
of social processes taking place between individuals and of
blindness in respect to the existence of different types of social
interactions. For example, in most works on e-mail (19) or mobile
phone networks (17, 20), the existence and weight of a link is

Fig. 1. Multiplex networks consist of a fixed set of nodes connected by
different types of links. This multirelational aspect is usually neglected in
the analysis of large social networks. In our MMOG dataset, six types of social
links can exist between any two players, representing their friendship or en-
mity relations, their exchanged private messages, their trading activity, their
one-to-one aggressive acts against each other (attacks), and their placing of
head money (bounties) on other players as, e.g., means of punishment.
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determined by the volume of information exchanged between two
individuals. Although nodes can be generally well characterized
(age, sex, zip code, etc.), the corresponding type of interaction
(e.g., family or work interaction) is usually unavailable in the data
and can only be inferred from behavioral patterns (21). More-
over, research on large social networks has focused on single
types of interaction only, e.g., phone or e-mail communication,
and has ignored the wide spectrum of human interactions in real
life (2). Whenever interdependencies and feedbacks between
multiple relational interactions are significant, an aggregate re-
presentation of the different network types or the representation
of one single type will lead to a biased and misleading character-
ization of the organization of the system.

The following work is an attempt toward fully characterizing
the multiplex nature of a large-scale social system. To this end,
we analyze coherent data from a complete society consisting
of about 300,000 players of a massive multiplayer online game
(MMOG) (22). Having become extremely popular over the past
years, there exists a multitude of large-scale online games—often
played by thousands, sometimes even millions. These games offer
the possibility to experience alternative lives in which players can
engage in different types of social interactions, ranging from
establishing friendships and economic relations to the formation
of groups, alliances, fighting, and even waging of war (18). Prac-
tically all actions of all players can be recorded in log files. The
booming popularity of MMOGs opens previously unthinkable
potentials for data-driven, quantitative socioeconomic research
(23) and enables, e.g., economic surveys (24), studies on group
dynamics (25), or large-scale social network analyses and the
testing of classical sociological hypotheses (18).

The data allow the nature of one-to-one interactions between
players to be identified; the topological properties of the corre-
sponding networks—defined on the same set of agents—can
be studied. We show that different types of interactions are char-
acterized by distinct connectivity patterns. Exploring the interde-
pendence of the different networks reveals how multiplexity
shapes the organization of the system at different levels, from
the stability of local motifs to the global overlap between the
networks. Moreover, the existence of positively and negatively
connoted interactions between players, e.g., through declared
friendship or enmity, allows the organization of the system to
be analyzed from the point of view of signed networks (1). Within
this framework, it becomes possible to experimentally verify
structural balance (26), a long-standing theory in social psychol-
ogy (27) proposed for understanding emergence of conflict and
tension in social systems (28). The central idea behind structural
balance is that some configurations of signed motifs, i.e., local
“building blocks” of networks containing positive and/or negative
ties, are socially and psychologically more stable than others
and are therefore more likely to be present in human societies.

By measuring the dynamics and abundance of signed triads (sets
of three nodes connected by positive or negative links), we per-
form a large-scale validation of structural balance and provide
insights indispensable for a realistic modeling of conflicts.

Results
Nature of the Various Networks. Different types of connectivity
patterns may signal different organization principles behind
the formation of networks (29, 30). Statistical properties of the
six networks, when considered as separated entities, are collected
in Table 1. We get the following results.

Positive links are highly reciprocal, negative links are not. Table 1
shows that networks with a positive connotation [friendship,
private messages (PMs), and trades] are strongly reciprocal
(31) (SI Text), in the sense that node pairs have a high tendency
to form bidirectional connections, whereas networks with a nega-
tive connotation (enmity, attack, and bounty) all show signifi-
cantly smaller reciprocity. Low reciprocation in enemy networks
may partially be explained by deliberate refusal of reciprocation
to demonstrate aversion by total lack of response (18). For attack
networks, it may originate from the asymmetry in the strength of
the players (a strong player is more likely to attack a weaker
player to secure a win). Asymmetry in negative relations is
confirmed in the correlations between node in-degrees and
out-degrees. Positive links are almost balanced in the in- and
out-degrees, ρ ∼ 1, whereas negative links show an obvious sup-
pression in doing to others what they did to you.

Power-law degree distributions indicate aggressive actions. Studying
cumulative in- and out-degree distributions, we find pronounced
power-law distributions for aggressive behavior, i.e., attacking
(out-degree for attacks), being declared an enemy (in-degree
for enmity), and punishing/being punished (out- and in- degree
for bounty). Power laws are absent for positive (friendship, com-
munication, trade) and passive links (being attacked) (see Fig. 2).
This discrepancy in degree distributions hints at qualitatively
different link-growth/rewiring processes taking place in positive
tie networks compared to the negative ones. For example, the
classic network growth model of preferential attachment (32)
leads to a power-law degree distribution. As we have shown in
ref. 18, the growth of enemy networks is well characterized by
this model, but not the growth of friend networks.

Positive links cluster. From Table 1 it is clear that the positively
connoted links show higher clustering coefficients than negatively
connoted ones. High values of the clustering coefficient are
expected for positive interactions due to their cohesive nature
and the benefits of dense subgraphs for better performance
(33). The significantly lower values of clustering for negative

Table 1. Single network properties

Positive ties Negative ties

Friends PMs Trades Enemies Attacks Bounties Envelope (all αs)

Directed Nα 4,313 5,877 18,589 2,906 7,992 2,980 18,819
Ldirα 31,929 185,908 796,733 21,183 57,479 5,096 967,205
rα 0.68 0.84 0.57 0.11 0.13 0.20 0.59

ρðkin
α ;kout

α Þ 0.88 0.98 0.93 0.11 0.64 0.31 0.95
Undirected Lundirα 21,118 107,448 568,923 20,008 53,603 4,593 679,404

k̄α 9.79 36.57 61.21 13.77 13.41 3.08 72.20
Cα 0.25 0.28 0.43 0.03 0.06 0.01 0.42

Cα∕Crand
α 109.52 45.71 131.95 6.13 37.27 13.88 109.93

Properties of directed networks: number of nodes Nα (connected to at least one link), number of directed links Ldirα , reciprocity rα, and in-degree/out-
degree correlation ρðkin

α ;kout
α Þ. Greek indices mark network types. Properties of the corresponding undirected networks: number of undirected links Lundirα ,

average degree k̄α, clustering coefficient Cα, and ratio to the corresponding random graph clustering Cα∕Crand
α . The networks, when considered as separate

entities, present distinct types of organization depending on the nature of the interactions. Positively (negatively) connoted links present high (low) values
of rα, ρðkin

α ;kout
α Þ, and Cα.

Szell et al. PNAS ∣ August 3, 2010 ∣ vol. 107 ∣ no. 31 ∣ 13637

SO
CI
A
L
SC

IE
N
CE

S
A
PP

LI
ED

PH
YS

IC
A
L

SC
IE
N
CE

S

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

O
ct

ob
er

 2
2,

 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1004008107/-/DCSupplemental/pnas.1004008107_SI.pdf?targetid=STXT


values suggests that mechanisms such as triadic closure (34) are
not dominant for negative interactions (see SI Text for a confir-
mation) and has its origin in the balance of signed motifs
(see below).

The independent analysis of the different networks reveals
distinct types of organization which depend on the nature of
the links. It is crucial to account for these distinct topological
properties in models for the dynamics of cooperation and conflict
in human societies. To demonstrate the danger of not differen-
tiating between types of interactions, we include data on the
envelope network (as defined in Materials and Methods) in
Table 1. Neglecting the nature of social ties and mixing different
interactions (even within the same dataset) results in gross
misrepresentation of the system, in this case at least by losing
the typical low reciprocity and clustering observed in negative
tie subnetworks.

For a detailed analysis of the time evolution of single network
properties on the same dataset (first 445 days in the Artemis
game universe), refer to ref. 18. There several “aging” or “matur-
ing” effects were reported, such as a decrease of the clustering
coefficient and reciprocity in friend networks over time.

Network–Network Interactions.Due to strong interactions between
different social relations, a next level of complexity enters when
considering the coexistence of different types of links (35). From
now on, we only focus on undirected versions of the networks,
as defined in Materials and Methods. To quantify the resulting
interdependencies between pairs of networks, we follow two
approaches.

On one hand, we focus on the link overlap between networks
and calculate the Jaccard coefficient Jαβ between two different
sets of links α and β. On the other hand, we compute correlations
ρðkα;kβÞ between node degrees in different networks (see SI Text).
These coefficients measure to which extent degrees of agents in
one type of network correlate with degrees of the same agents in
another one. If ρðkα;kβÞ is close to one, players who have many
(few) links in network α have many (few) links in network β. Note
that both measures might be affected by different network sizes
or average degrees. To account for this possibility, we additionally
compute correlations ρðrkðkαÞ;rkðkβÞÞ between rankings of
node degrees, where rk represents rank. Overlap and correlation
quantities provide complementary insights into the organization
of social structures. In Fig. 3, for all pairs of networks, the three
measures are shown. Note that no causal directions can be
implied and that all correlations are positive. From highest to
smallest overlap (from left to right), Fig. 3 provides the following
conclusions:

Communication–friendship. The pronounced overlap implies that
friends tend to talk with each other. The equally pronounced
correlation attests that players who communicate with many
(few) others tend to have many (few) friends. The former result
was already reported in ref. 18, where a high fraction of com-
munication partners was shown to be friends.

Trade–communication. The high overlap shows that trade part-
ners have a tendency to communicate with each other, whereas
the high correlations shows a tendency of communicators being
traders.

Enmity–attack. The high overlap shows that enemies tend to
attack each other, or that attacks are likely to lead to enemy
markings. The high correlations imply that aggressors or vic-
tims of aggression tend to be involved in many enemy relations.

Communication–attack. The relatively high overlap shows that
there is a tendency for communication taking place between
players who attack each other. The relatively high correlation
implies that players who communicate with many (few) others
tend to attack or be attacked by many (few) players. Aggression
is not anonymous, but accompanied by communication.

Enmity–bounty and attack–bounty. Similar to enmity–attack.
Communication–enmity. Similar to communication–attack.
Trade–friendship. Similar to trade–communication, however with
a smaller overlap. It is more difficult for traders to become
friends than to just communicate.

Friendship–attack. The low overlap shows that attacks tend to not
take place between friends, or that fighting players do not tend
to become friends. The relatively high correlations mean that
players with many (few) friends attack or are attacked by many
(few) others.
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Fig. 2. Cumulative in-degree and out-degree distributions for the six types
of networks spanning the same set of agents: (A) friendship, (B) communica-
tion, (C) trade, (D) enmity, (E) attack, and (F) bounty. Note the differences
between in- and out-degree distributions and the presence of power laws
(with cutoffs) for negatively connoted interactions (Right Column), which
are absent for positive ties (Left Column). It is immediately clear that topo-
logical properties of social networks depend strongly on the nature of their
ties. Ignoring this multirelational composition can lead to loss of essential
information.
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and B, bounty. Pairs of equal connotation (positive–positive or negative–
negative) are marked with a gray background. These pairs have high
overlaps, whereas oppositely connotated pairs have lower overlaps. The
various relations are organized in a nontrivial way, suggesting that agents
play very different roles in different relational networks.
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Trade–attack. Similar to friendship–attack.
Communication–bounty. Similar to communication–attack and
communication–enmity, however with much smaller overlap
and degree correlations.

Trade–enmity. For this and all other interactions, overlap
vanishes. Players who trade with each other almost never be-
come enemies and vice versa.

Friendship–bounty. Similar to communication–bounty.
Friendship–enmity. The degree (rank) correlation is substantial,
suggesting that players who are socially active tend to establish
both positive as well as negative links. However, the vanishing
overlap shows the absence of ambivalent relations. Friends are
never enemies.

Trade–bounty. This interaction shows the smallest values for all
three properties, which could be due to substantial differences
in network sizes. The relatively small correlation may suggest
that players who are experienced in trade have a tendency to
not act out negative sentiments by spending money on bounties.

The exact values of the two correlation measures have to
be interpreted with some caution. High values might be biased
by, e.g., the time a player spent in the game or by ignoring link
weights for the number of exchanged private messages or traded
money. Nevertheless, low values of ρðkα;kβÞ indicate that hubs in
one network are not necessarily hubs in another (see, e.g., the
trade–enmity case), suggesting that agents play very different
roles in different relational networks. For example, agents can
be central for flows of information but peripheral for flows of
goods (36) In the SI Text, we give further relations between above
network–network measures and study their evolutions in time
(see Figs. S1 and S2).

Large-Scale Empirical Test of Structural Balance. In the following, we
assign + (− ) 1 to a positively (negatively) connoted link. All
friendship links have a value of + 1, all enemy links − 1. Social
balance focuses on signed triads where the sign of a triad is the
product of the signs of its three links.

Social balance theory—in its strong form (28)—claims that
positive triads are “balanced” whereas negative triads are “unba-
lanced” (see Fig. 4). Unbalanced triads are sources of stress and
therefore tend to be avoided by agents when they update their
personal relationships. From a physics point of view, the resulting
dynamics can be viewed as an energy minimization process which
may lead to jammed states (37) due to a rugged energy landscape
(38). There is a “weak formulation” of structural balance (39)
which postulates that triads with exactly two positive links are un-
derrepresented in real networks, whereas the three other kinds of
triads should be much more abundant. In the weak formulation,
only situations where “the friend of my friend is my enemy” are

unstable, whereas in the strong form of structural balance, “the
enemy of my enemy is my enemy” is also unstable (see Fig. 4).

To test social balance, we focus on the multiplex network of
friendship and enmity interactions. The number of different types
of triads are labeled NΔ. They are compared to the expected
number of such triads in a null model (reshuffled signs of links,
Nrand

Δ ; see SI Text). In Fig. 4, a standard measure of statistical de-
viation, the z score (see SI Text), shows that +++ and +−−
triads are heavily overrepresented, whereas ++− triads are
heavily underrepresented with respect to pure chance. Triads
of type −−− are underrepresented to a lesser degree than
the three other types, favoring the weak formulation of structural
balance over Heider’s original formulation of balance theory. It is
obvious that triads are characterized by different levels of stabi-
lity. The robustness of these results is further confirmed by exam-
ining the time evolution of the number of triads in friendship/
enmity networks over all 445 days (Fig. 5).

A detailed dynamical analysis of our data further reveals that a
vast majority of changes in the network are due to the creation of
new positive and negative links, not due to switching of existing
links from plus to minus or vice versa. We illustrate this domi-
nance of link destruction and creation over sign switching on
the dynamics of the following triadic structures. Let us define
a wedge as a signed undirected triad with two links, i.e., a triad
with one link missing (a “hole”). There are three possible wedge
types: ++, +−, or−−. We measure day-to-day transitions from
wedges to other possible triadic structures. In the vast majority of
all cases (>99.9%), a wedge stays unchanged. In case of change,
most often a hole is closed by either a positive or a negative link
(see Fig. S3). The removal of a link is less frequent; sign switches
almost never occur. This result is in marked contrast with many
dynamical models of structural balance (37) which assume that a
given social network is fully connected from the start and that
only the link signs are the relevant dynamical parameters, which
evolve to reduce stress in the system. Our observation underpins
that network sparsity and growth are fundamental properties and
they need to be incorporated in any reasonable model of
dynamics of positive and antagonistic forces in social systems.
In full agreement with the results shown in Figs. 4 and 5, wedges
of type ++ close preferentially (about 7 times more likely) with a
positive link, and wedges of type +− close preferentially (about
11 times more likely) with a negative link. There is no clear
sign preference in the closure of type −− wedges. For details
see SI Text and Figs. S3–S5.

We collect empirical transition rates in a transition matrix
MSTC, which we use in a simple dynamical model for signed tria-
dic closure (STC) (see SI Text). This STC model applies MSTC on
a daily state vector of signed wedges. These wedges are closed or
left unchanged according to the elements of MSTC. With this
model, we are able to reproduce the empirical observations to
a reasonable extent (see Fig. 5 Right).

Strong formulation 
of balance

Weak formulation 
of balance

B

+ + +

- - -

- --+ +

+

B U

U B U

B B

26,329 4,428 39,519 8,032

10,608 30,145 28,545 9,009

-5

Fig. 4. Different types of signed triads, balanced (B) or unbalanced (U)
according to the strong or weak formulation of structural balance. We show
the number of each type of triad NΔ in the friendship–enmity multiplex net-
work, the expected number Nrand

Δ of such triads when averaged over 1,000
sign randomizations, and the corresponding z score (see SI Text). Triads + + +
and +−− are overrepresented; + +− triads are underrepresented with
extraordinary significance.
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Fig. 5. Ratio of signed triad types over time. (Left) Measured in the data.
(Center) Expected in the random null model (see SI Text). (Right) Simulation
of STC with a model based on wedge transition rates (see SI Text). Initial
condition: Measured network of day 100. All ratios measured in the data de-
viate significantly from ratios in the null model, except for the −−− triads.
The STC model reproduces the observed ratios considerably better.
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Discussion
Most empirical studies of large-scale social networks focus on
node properties (5), for instance, to uncover the topological cen-
trality of social agents or patterns of homophily between agents
(40), while being blind to the multiple nature of the links connect-
ing agents. In many social systems, however, a proper description
of multiplexity is essential to capture the stress caused by differ-
ent forces acting on social agents and therefore to uncover the
principles shaping the large-scale organization of social interac-
tions. For instance, the interaction and coexistence of multiple
relations are crucial to describe the emergence of conflict in so-
cial systems (41–43) or the development of trust in commercial
networks (44).

Our work begins to quantitatively measure the multidimen-
sionality of human relationships. Its results shed light on macro-
scopic implications of interaction types: Relations driven by
aggression lead to markedly different systemic characteristics
than relations of a nonaggressive nature. Network–network inter-
actions reveal a nontrivial structure of this multidimensionality
and how humans play very different roles in different relational
networks. The richness of the dataset allows the effect of multiple
relations on the structure and stability of a large-scale social
network to be explored, thereby providing a first empirical basis
for the modeling of multiplex complex networks. Future research
perspectives include different generalizations of structural
balance theory, e.g., to a larger set of social relations, to the case
of weighted and/or directed networks or to larger motifs, an
extension of the concept of modularity for multiplex (7) or signed
(45) networks but also dynamical aspects, for instance, the
dynamics of noncooperative organizations (46).

Materials and Methods
Social Network Data from the Online Game “Pardus.” The dataset contains
practically all actions of all players of the MMOG Pardus since 2004 when
the game went online (18). Pardus is an open-ended game with a worldwide
player base of more than 300,000 people. Players live in a virtual, futuristic
universe in which they explore andwhere they interact with others in amulti-
tude of ways to achieve their own goals (22). Here we focus on one of the
three separate game universes, Artemis, in which N ¼ 18;819 players have
interacted with at least one other player over the first 445 consecutive days
of this universe’s existence.

Players typically engage in various economic activities to accumulate
wealth. Communication between any two players can take place directly,
by using a one-to-one, e-mail-like, PM system (see SI Text), or indirectly,
by meeting in built-in chat channels or online forums. Social and economical
decisions of players are often strongly influenced and driven by social factors
such as friendship, cooperation, and conflict. Conflictual relations may result
in aggressive acts such as attacks, fights, revenge, or even destruction of
another player’s means of production or transportation. Under certain
conditions, hostile acts may degenerate into large-scale conflicts between
different factions of players—wars.

The dataset contains longitudinal and relational data allowing for an
almost complete and dynamical mapping of multiplex relations of an entire
society. The data are free of interviewer effects because agents are not con-
scious of their actions being logged. Measurement errors which usually affect
reliability of survey data (47) are practically absent. The longitudinal aspect of
the data allows for the analysis of dynamical aspects such as the emergence
and evolution of network structures. Finally, it is possible to extract multiple
social relationships between a fixed set of humans. We focus on the following
set of six types of one-to-one interactions between players (for details, see
SI Text): friendship and enmity relations, PM communication, trades, attacks,
and revenge/punishment through head money (bounties). We label these
networks by Greek indices: α ¼ 1 refers to friendship networks, …, α ¼ 6

to bounties. We focus on one-to-one interactions only (without projections
as, e.g., used in refs. 48 and 49) and discard indirect interactions such as mere
participation in a chat.

Friendship and enmity networks are taken as snapshots at the last avail-
able day 445. All other networks are aggregated over time, meaning that
whenever a link existed within day 1 and 445, it is counted as a link. For sim-
plicity, we use unweighted, directed networks. Further, we define undirected
networks as follows: A link exists between nodes i and j if there exists at least
one directional link between those nodes. We construct triads [motifs of
three connected nodes (1)] from undirected links. For a combined analysis
of the whole system, we define an envelope network which is composed
of the set of all links of all interaction types. In the envelope network, a link
from i to j exists if it exists in at least one of the six relational networks.

Network Measures. The statistical properties of the six networks have been
studied as separate entities using the following notations and measures.
Nα is the number of nodes in the network type α, and LdirðundirÞα is the number
of (un)directed links. Reciprocity is labeled by rα, and ρðkin

α ;kout
α Þ is the correla-

tion of in- and out-degrees within the α network. Average degree, clustering
coefficient, and clustering coefficient with respect to the corresponding ran-
dom graph are marked by k̄α, Cα, and Cα∕Crand

α , respectively. For more details,
see the SI Text.

Network Interactions. For network–network interactions, we compute the
Jaccard coefficient which measures the interaction between two networks
by measuring the tendency that links simultaneously are present in both net-
works. Jαβ is a similarity score between two sets of elements and is defined as
the size of the intersection of the sets divided by the size of their union (50),
Jαβ ≡ jα ∩ βj∕jα∪βj. Related similarity measures, such as the cosine similarity
measure lead to comparable results. The correlation measures used are
described in detail in the SI Text.

The legal department of theMedical University of Vienna has attested the
innocuousness of the used anonymized data.
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