Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen

Michael J. Evans, Peter M. Smith-Jones, John Wongvipat, Vincent Navarro, Sae Kim, Neil H. Bander, Steven M. Larson, and Charles L. Sawyers

Approximately 27,000 patients will die of castration-resistant prostate cancer (CRPC), the lethal form of the disease, in the United States in 2011. One hallmark of CRPC is reactivation of androgen receptor (AR) signaling despite castrate levels of androgens in the blood. This insight has rekindled interest in developing androgen deprivation therapies with greater potency, several of which have already shown clinical activity in patients with CRPC (2–4). Treatment responses, however, are incomplete and short-lived. Given these heterogeneous patterns of response, new biomarkers are urgently needed to document successful AR inhibition in tumor tissue and to identify patients early whose tumors fail to respond.

Serum measurements of the AR-regulated, secreted protein prostate-specific antigen (PSA) are typically used to evaluate AR signaling in prostate cancer. PSA is highly useful for evaluating initial response to androgen deprivation therapies and detecting relapse, but reductions in serum PSA levels do not always correlate with survival benefit in CRPC patients. Radiographic studies often demonstrate tumor responses, but these can be mixed, with some lesions shrinking whereas others are stable or expanding, likely a reflection of the heterogeneity of prostate cancer even within the same patient. The differential sensitivity of distinct metastatic lesions to androgen therapy might be explained by different levels of AR inhibition. Because declines in serum PSA levels reflect an average across all lesions, it is not currently possible to determine whether AR inhibition varies at different sites.

We reasoned that these difficulties could be overcome with a radiopharmacological that measures intratumoral AR signaling. The basis for our optimism extends from previous work demonstrating that molecular imaging tools [e.g., \(^{18}\)F-fluorodeoxyglucose (\(^{18}\)FDG), \(^{18}\)F-16β-fluoro-5α-dihydrotestosterone (\(^{18}\)FDHT), \(^{11}\)C-methionine] can capture the biological diversity of CRPC (7–9), in addition to the emerging role of molecular imaging in the evaluation of cancer therapies. For instance, documenting the metabolic tumor response to imatinib with \(^{18}\)F-FDG has greatly simplified the clinical management of gastrointestinal stromal tumors (10, 11).

Although originally identified on the basis of its restricted pattern of tissue expression, prostate-specific membrane antigen (PSMA) emerged as a candidate imaging biomarker of AR activity on the basis of two reports showing that androgen suppresses PSMA expression in the LNCaP prostate cancer cell line (12, 13). Consistent with this observation, Wright et al. (14) reported elevated immunohistochemical staining for PSMA in a small cohort of primary and metastatic biopsies sampled after various androgen deprivation manipulations. Moreover, PSMA is a type II plasma membrane protein expressed abundantly in prostate cancer epithelia, and a substantial catalog of laboratory and clinical imaging tools directed to this protein has been generated (15). Collectively, these observations led us to hypothesize that PET imaging of PSMA might be a viable strategy to measure AR inhibition in vivo.

Results

PSMA Is Androgen Repressed in Multiple Prostate Cancer Models.

Prior work implicating PSMA as an androgen-repressed gene is based on a single cell line. To determine whether this biological response is observed more broadly, we surveyed a panel of six prostate cancer cell lines. PSMA is expressed in four AR-positive, hormone-responsive prostate cancer cell lines (LNCaP, CWR22Rv1, LAPC4, and VCaP) but not in two AR-negative prostate cancer lines (PC3 and DU145) or in two immortalized primary prostate epithelial cell lines (BPH and RWPE1; Fig. S1). Androgen stimulation for 72 h with testosterone, 5α-dihydrotestosterone (DHT) or the synthetic AR agonist R1881 reduced PSMA protein levels in cultured LNCaP, CWR22Rv1, LAPC4, and VCaP cells compared with the low androgen environment of FBS and the androgen-free envi...
ronment in charcoal-stripped serum (CSS) (Fig. 1A and Fig. S2). Moreover, PSMA mRNA levels were reduced by androgen treatment in LNCaP (∼50% maximal reduction) and CWR22Rv1 (∼80% maximal reduction), whereas PSA mRNA levels were elevated, as expected (Fig. 1B). These in vitro data confirm that PSMA expression is suppressed by androgens across a panel of AR-positive cell lines. To evaluate hormonal regulation of PSMA in vivo, we established subcutaneous (s.c.) LNCaP and CWR22Rv1 xenografts in castrate male mice. Xenograft tissue harvested and analyzed from mice 7 d after receiving an s.c. DHT pellet showed a substantial reduction in PSMA mRNA and protein levels compared with tissue derived from mice receiving no treatment. As expected, mRNA levels of PSA, an AR target gene, increased in response to androgen challenge, confirming the bioactivity of hormone treatment at this time point. (C) Subcutaneous xenografts of LNCaP and CWR22Rv1 derived in castrate male mice were harvested 7 d after implantation of a DHT pellet or no surgical treatment (No Tx). Immunoblot (Upper) and quantitative PCR analysis (Lower) shows that PSMA is expressed in PCa xenografts, and expression is reduced by DHT treatment. The androgen-stimulated gene product TMPRSS2 is up-regulated by DHT, confirming the bioactivity of the pellet dose.

AR Is Required for Androgen Repression of PSMA. To confirm that the suppression of PSMA expression by androgen is AR dependent, we ablated AR with siRNA in LNCaP and CWR22Rv1 and subsequently evaluated androgen regulation of PSMA. Whereas silencing AR itself did not seem to impact basal PSMA levels at this time point (72 h), knockdown of AR abolished PSMA repression by DHT in both cell lines (Fig. 2A).

This observation suggested that pharmacological inhibitors of AR might antagonize androgen-dependent PSMA suppression. To test this hypothesis, LNCaP-AR cells (parental LNCaP over-expressing wild-type AR) were treated with androgen deprivation, and the effect on PSMA surface expression was assayed by FACS analysis with fluorescently labeled J591, a fully humanized mAb that targets an extracellular epitope of PSMA (16, 17). MDV3100, an experimental antiandrogen developed in castration-resistant models of prostate cancer (18), increased PSMA expression compared with vehicle control after 7 d, with further up-regulation after 14 d (Fig. 2B). Incubation in media with CSS alone (androgen deprivation) resulted in larger overall up-regulation of PSMA but only after 14 d. Similar results were observed with parental LNCaP cells (Fig. S3). In CWR22Rv1 cells, MDV3100 treatment (10 μM) antagonized suppression of PSMA by 10 nM testosterone, as did harmol hydrochloride (10 μM), a natural product inhibitor of AR that is not ligand competitive (19) (Fig. S4). In summary, these results document the role of AR in androgen-dependent regulation of PSMA and demonstrate that pharmacologic modulation of AR signaling is faithfully reflected by changes in relative PSMA levels. The fact that PSMA up-regulation was visualized after 7–14 d of androgen deprivation suggests that stable AR knockdown may be required to see similar effects using RNAi targeting AR.

Androgen Repression of PSMA Can Be Quantitatively Imaged with PET. We next explored whether androgen-dependent changes in PSMA expression are sufficiently large to be quantitatively imaged in vivo with PET. To this end, bilateral s.c. CWR22Rv1 xenografts were established in the flanks of castrate male mice and were imaged by PET with 64Cu-J591 (Fig. 3A and B). All xenografts had approximately equivalent basal incorporation of 64Cu-J591 [average standardized uptake value (SUV)mean = 39.7 ±
Twenty-four hours after imaging, mice were randomized into equal cohorts receiving (i) no treatment, (ii) a s.c. testosterone pellet, or (iii) an s.c. DHT pellet. After 6 d, the groups were again injected with 64Cu-J591, imaged 16 h after injection, and subsequently euthanized for ex vivo tissue analysis. A modest reduction in tumor uptake of 64Cu-J591 was observed 7 d after the initial injection in the group receiving no treatment (0.81 ± 0.08), likely owing to the presence of residual antibody from scan 1. Nevertheless, testosterone and DHT treatments greatly reduced the incorporation of 64Cu-J591 in tumor tissue compared with no-treatment control (0.52 ± 0.1 and 0.45 ± 0.1 respective ratios, $P < 0.01$; Fig. S5 shows a plot of correlated PET and biodistribution data, and Table S1 lists SUVmean and biodistribution data from the tumor tissue of the full mouse cohort).

Moreover, biodistribution data revealed that 64Cu-J591 uptake was unaffected in androgen-insensitive host tissues, indicative of specific pharmacological effects of testosterone and DHT (Fig. 3C; Table S2 lists biodistribution values from the full mouse cohort).

Androgen Deprivation Therapies Increase 64Cu-J591 Uptake in Xenografts. Having shown that androgen repression of PSMA can be quantitatively imaged, we asked whether up-regulation of PSMA expression can be detected with 64Cu-J591 PET after treatment with antiandrogens. The preclinical studies of MDV3100 were conducted in LNCaP-AR xenografts and were predictive of clinical activity; therefore, we conducted our PSMA imaging studies using the same model. Intact male mice were inoculated with bilateral s.c. LNCaP-AR xenografts, and basal uptake of 64Cu-J591 was determined (average SUVmean = 30.5 ± 9.3%ID/g).

Mice were then randomized into cohorts receiving (i) vehicle (daily oral gavage), (ii) castration, or (iii) MDV3100 (daily oral gavage, 10 mg/kg). Tumor volumes decreased by 10–20% 7 d.
after castration or MDV3100 treatment, as expected (Fig. 4A). After 6 d, the groups were again injected with 64Cu-J591, imaged 16 h after injection, and subsequently euthanized for ex vivo tumor analysis. Whereas the relative change in intratumoral uptake of 65Cu-J591 in cohorts receiving no treatment or castration was minimal (ratios of 1.10 ± 0.2 and 1.13 ± 0.2, respectively), MDV3100 treatment significantly increased the incorporation of 64Cu-J591 in the xenografts compared with vehicle (1.43 ± 0.2, P < 0.05; Fig. 4B and C; Fig. S5 shows a plot of correlated PET and biodistribution data, and Table S3 lists SUVmean values from the full mouse cohort).

Discussion

Recent clinical success with two next-generation therapies that target AR signaling in CRPC, abiraterone and MDV3100, highlights the importance of developing noninvasive tools to quantitatively monitor the state of AR pathway activity in patients. Despite their promise, responses to these compounds are heterogeneous and often transient. Reasons for treatment failure are unclear. Although changes in serum PSA levels can serve as a surrogate for AR activity, this approach cannot detect variability in response of independent lesions within the same patient. Here we provide proof of concept in clinically validated xenograft models that cell-surface PSMA expression is AR dependent and can be quantitatively assessed by PET using a humanized monoclonal antibody cleared for clinical use. 18F-FDHT, a radioligand that targets the ligand-binding domain of AR, assesses receptor occupancy but not downstream activity. Recent studies of 18F-FDHT PET in CRPC patients treated with MDV3100 found that tumors in nearly all patients showed a decrease in 18F-FDHT binding, indicating that MDV3100 can occupy the AR ligand-binding domain and preclude 18F-FDHT binding. However, these 18F-FDHT PET “responses” did not correlate with declines in serum PSA or tumor response (3). Therefore, 18F-FDHT PET may have utility in optimizing the dose of antiandrogen required for complete blockade of androgen binding to AR, but it cannot assess AR pathway activity. By quantitatively assessing expression of a downstream AR target gene, 64Cu-J591 PET may identify those patients whose tumors retain AR activity despite blockade of the AR ligand-binding domain and therefore would be ideal candidates for additional, orthogonal therapies to fully inhibit AR signaling.

The molecular basis for down-regulation of PSMA expression by AR remains unclear. Noss et al. (12) localized the DHT-mediated suppression of PSMA to an enhancer region, but no androgen response elements have been identified. Recent AR ChIP-Seq reveals four peaks of AR binding among multiple introns of PSMA in LNCaP (20). Functional studies are needed to determine whether these sites mediate AR repression.

Recent studies of 18F-FDHT PET in CRPC patients treated with MDV3100 found that tumors in nearly all patients showed a decrease in 18F-FDHT binding, indicating that MDV3100 can occupy the AR ligand-binding domain and preclude 18F-FDHT binding. However, these 18F-FDHT PET “responses” did not correlate with declines in serum PSA or tumor response (3). Therefore, 18F-FDHT PET may have utility in optimizing the dose of antiandrogen required for complete blockade of androgen binding to AR, but it cannot assess AR pathway activity. By quantitatively assessing expression of a downstream AR target gene, 64Cu-J591 PET may identify those patients whose tumors retain AR activity despite blockade of the AR ligand-binding domain and therefore would be ideal candidates for additional, orthogonal therapies to fully inhibit AR signaling.

The molecular basis for down-regulation of PSMA expression by AR remains unclear. Noss et al. (12) localized the DHT-mediated suppression of PSMA to an enhancer region, but no androgen response elements have been identified. Recent AR ChIP-Seq reveals four peaks of AR binding among multiple introns of PSMA in LNCaP (20). Functional studies are needed to determine whether these sites mediate AR repression.

Recent clinical success with two next-generation therapies that target AR signaling in CRPC, abiraterone and MDV3100, highlights the importance of developing noninvasive tools to quantitatively monitor the state of AR pathway activity in patients. Despite their promise, responses to these compounds are heterogeneous and often transient. Reasons for treatment failure are unclear. Although changes in serum PSA levels can serve as a surrogate for AR activity, this approach cannot detect variability in response of independent lesions within the same patient. Here we provide proof of concept in clinically validated xenograft models that cell-surface PSMA expression is AR dependent and can be quantitatively assessed by PET using a humanized monoclonal antibody cleared for clinical use. 18F-FDHT, a radioligand that targets the ligand-binding domain of AR, assesses receptor occupancy but not downstream activity. Recent studies of 18F-FDHT PET in CRPC patients treated with MDV3100 found that tumors in nearly all patients showed a decrease in 18F-FDHT binding, indicating that MDV3100 can occupy the AR ligand-binding domain and preclude 18F-FDHT binding. However, these 18F-FDHT PET “responses” did not correlate with declines in serum PSA or tumor response (3). Therefore, 18F-FDHT PET may have utility in optimizing the dose of antiandrogen required for complete blockade of androgen binding to AR, but it cannot assess AR pathway activity. By quantitatively assessing expression of a downstream AR target gene, 64Cu-J591 PET may identify those patients whose tumors retain AR activity despite blockade of the AR ligand-binding domain and therefore would be ideal candidates for additional, orthogonal therapies to fully inhibit AR signaling.

The molecular basis for down-regulation of PSMA expression by AR remains unclear. Noss et al. (12) localized the DHT-mediated suppression of PSMA to an enhancer region, but no androgen response elements have been identified. Recent AR ChIP-Seq reveals four peaks of AR binding among multiple introns of PSMA in LNCaP (20). Functional studies are needed to determine whether these sites mediate AR repression.

The molecular imaging strategy described here could have near-term clinical impact because the unlabeled J591 antibody has already been optimized for use in patients (21, 22). Recent success imaging preclinical prostate cancer models with 89Zr-labeled J591 adds further confidence that this mAb could be readily adapted for a feasibility study in patients. Another clinical implication of our finding that PSMA is up-regulated in response to antiandrogen therapy is that a toxin-conjugated PSMA-targeted mAb could be an effective combination therapy with antiandrogens. Indeed, J591 has been adapted for radioimmunotherapy, and Ab–drug conjugates and therapeutic doses are well tolerated in patients (24, 25).

Materials and Methods

Detailed information is provided in SI Materials and Methods.

Antibody Radiolabeling. The monoclonal antibody J591 was modified with 1,4,7,10-tetraazacyclododecane-1,N,N,N′,N′′′-tetraacetic acid (DOTA), by direct coupling of one of the four carboxylic acid groups of DOTA to the primary amine in the antibody protein structure. The antibodies were labeled with 64Cu by adding 10 μL of 64CuCl2 to 150 μL of DOTA-J591 (3.3 mg/mL, 1.0 M NH4OAc), and the solution incubated at 37°C for 20 min. Twenty-five microliters of 50 mM diethylenetriaminepentaacetic acid (pH 7.0) was added and the solution incubated for an additional 5 min. The reaction mixture was then purified on a 10-ml column of P6 Bio-Gel (Bio-Rad) with an eluant of 1% BSA/saline. The resultant 64Cu-DOTA-J591 had a specific activity of 1.5 GBq/mg (220 MBq/μmol), an immunoreactivity of >90%, and a radiochemical purity of >99.8%.

PET Imaging. Animal studies were carried out under Protocol 06-07-012 approved by the MSKCC Institutional Animal Care and Use Committee. Institutional guidelines for the proper, humane use of animals in research were followed. Bilateral s.c. xenografts of CWR22Rv1 or LNCaP-AR were established in the flanks of castrate or intact male mice, respectively. At tumor volumes of 200 mm3, the animals were injected with 30 MBq of 64Cu-J591 (20 μg IgG, 200 μL) in the tail vein. After 16 h, the animals were sedated using 1.5% isoflurane (Baxter Healthcare) and imaged with a microPET camera (Concorde Microsystems). Ten-minute acquisitions were collected with an energy window of...
injected with 64Cu-J591 and were imaged 16 h after injection. Tumor size was measured twice with calipers, once before initiating treatment and again on day 7. At the end of the last PET scan the animals were euthanized with CO2. T he major organs were removed and counted in a gamma counter with a known sample of the %ID. Region-of-interest analysis of the acquired images was performed using ASIPro software (Siemens Medical Solutions), and the observed maximum pixel value was corrected for partial volume effects according to the size of the tumor and normalized to the injected dose to give the percentage of the injected dose per ml of tumor.

ACKNOWLEDGMENTS. We thank Valerie Longo and Pat Zanzonico of the Small-Animal Imaging Core Facility at Memorial Sloan-Kettering Cancer Center (MSKCC) for providing technical services and Thomas Voller of Washington University School of Medicine (St. Louis, MO) for the production of 64Cu. The Small Animal Imaging Core Facility was supported by the National Institutes of Health (R24 CA83084 and P30 CA06748). Production of 64Cu was supported by the National Institutes of Health (R24 CA86307). M.J.E. was supported by an R25T training grant in molecular imaging (R25-CA096945) from the National Institutes of Health. C.L.S. was supported by the Howard Hughes Medical Institute. S.M.L. and P.M.S.-J. were supported by the Ludwig Center for Cancer Immunotherapy at MSKCC and by National Cancer Institute Grant P50-CA86483. N.H.B., V.N., and S.K. are supported by the David H. Koch Foundation and the Peter M. Sacerdote Foundation.