






impacts of drought. The observed defoliation trends are consistent
with increased tree mortality rates in drier areas and with sudden
dynamic changes at higher trophic levels. Our results show that
Iberian forests are experiencing long-term chronic effects due to
severe climate change–related droughts, and that these effects are
progressively more pronounced in more xeric localities.
The reported trends toward increasing defoliation and mor-

tality in southern European forests may have positive and neg-
ative effects on the climate system through diverse paths that
remain to be quantified more precisely (34, 35). For instance,
increased crown defoliation in more xeric forested areas might
elevate the albedo of defoliated forests and increase sensible
heat flux to the atmosphere (34, 36). Widespread crown decline
also might reduce the effects of forest evaporative cooling (34),
thereby possibly contributing to the reported declining trend of
global land evapotranspiration (37). Notably, the increase in
crown defoliation might reduce the evaporative cooling capacity
of forests during hot periods and thus have a positive effect on
extreme summer heat waves and long-lasting summer drought
events (38). Moreover, widespread crown condition declines
over large areas potentially could alter local or regional con-
vective uplift dynamics and surface roughness effects (35, 36), as
well as the production of volatile organic compounds and de-
rived aerosols by forests, thereby possibly affecting the solar
radiation balance and cloud formation processes (39).
In terms of chemical cycling dynamics, the trend of increasing

defoliation (Fig. 2) suggests that the effects of drought are likely
reducing the carbon sink efficiency of southern European forests,
thereby contributing to the global reduction in carbon sink effi-
ciency observed in the Northern Hemisphere and at the global
scale (5, 8, 40). These results are in line with the recently

reported global reduction in terrestrial net primary production
over the last decade (7) and suggest that recurrent severe
droughts may directly translate into generalized changes in car-
bon and nutrient cycling dynamics at the macroecological scale in
more xeric Mediterranean areas. Indeed, previous empirical
studies assert that severe defoliation events are also associated
with increased nutrient cycling through leaf fall losses (14).
Similarly, water availability has recently been described as a ma-
jor determinant of terrestrial gross carbon dioxide uptake in
Mediterranean and temperate regions (41). In line with this as-
sertion, European carbon flux anomalies are correlated with
water deficit anomalies (42), terrestrial ecosystems seem to re-
spond to droughts with increased carbon flux to the atmosphere
(27), and dendrochronological studies at the local scale suggest
that important geographic areas in the Mediterranean basin are
already experiencing chronic drought-induced effects on tree
radial growth, growth variability, and crown condition (12, 19). In
the same vein, several empirical studies have reported significant
associations between crown condition decline and fine root
mortality, reduced radial growth, and tree mortality (43–45).
Our present findings add to the increasing number of reports

of drought-induced tree mortality responses, regional forest die-
offs, and vegetation shifts around the globe (9). All of this em-
pirical evidence highlights the need for improved long-term
networks devoted to monitoring the impacts of climate change
on forest health, functional trait variation, genetic variation, and
forest demography (9). Critically, the diverse physiological
mechanisms implicated in the reported defoliation and mortality
responses also remain to be elucidated. These may include long-
distance phloem transport effects, carbon reserve dynamics,
metabolic unbalances, and/or hydraulic failure processes (46).
Finally, our results demonstrate that extreme droughts can

substantially disrupt insect and fungi communities across exten-
sive areas and induce long-term changes in community structure.
These findings are consistent with previous studies that have
reported 10-fold reductions in arthropod richness and abundance
after long-lasting severe droughts and have identified foliage
quantity and quality as important drivers of community structure
(30, 31). Severe persistent droughts produce parallel disruptions
in different groups, affecting ecto-mycorrizal fungi (15), defoli-
ating fungi, herbivore and predator canopy insects, and para-
sitoids (30, 31). Bottom-up effects on vertebrate trophic chains
have been poorly quantified but might occur, given the structural
importance of insect resource channels in vertebrate networks in
the Mediterranean basin (47, 48). Whether large-scale food web
disruptions produced by drought can influence the extinction risk
of vulnerable insect species and secondary consumers is an open
question that warrants further research. This topic may emerge as
a relevant concern related to the conservation of currently en-
dangered biotic communities in the Mediterranean basin (49).

Materials and Methods
Data. Defoliationdata 1987–2007weregathered from the ICP Forests program
(25), mortality data were provided by the Second and Third Spanish National
Inventory (50), and climatic data were derived from records of the Spanish
National Institute of Meteorology (SI Appendix, Materials and Methods).

Climatic and Crown Defoliation Maps. Interpolated climatic and crown defoli-
ation mapswere derived by applyingmixed spatial interpolation methods that
combine global and local interpolations (SI Appendix, Materials andMethods).

Statistical Analyses. For defoliation analyses, we contrasted a battery of
modeling approaches including ordinary least squares, generalized linear
models, spatial simultaneous autoregressive models, generalized estimating
equations, and generalized linear mixed models. First-order autocorrelative
termswere introduced to account for temporal autocorrelation in themodels,
using the CorAR1 function in the R package. Spatial autocorrelation was
assessed by applying Moran’s I correlograms and plotting spatial maps of the
distributions of residuals. Mortality models were based on generalized linear
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Fig. 4. Shift in insect herbivore dynamics associated with drought impacts in
Q. ilex. (A) Temporal trends in the percentage of trees affected by insect
defoliation in the Iberian Peninsula. (B) Temporal trends in the percentage of
trees affected by drought. Dots represent sampled plots. A smooth surface
showing the density of sampled plots is provided. Red contour lines indicate
maximum point density. Spline fits describing the temporal variation in the
percentage of trees affected by insect damage and drought are shown.
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models with a binomial error distribution (SI Appendix, Materials and
Methods). Times series analyses were applied to assess the significance of
temperature and rainfall trends during 1950–2006 (SI Appendix, Materials
and Methods).
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