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Fig. S1. Cryo-ET provides an overview of the 3D structure of DMTs with associated axonemal proteins. This isosurface rendering of the averaged axonemal
repeat from pseudo-WT Chlamydomonas shows the proximal part of the DMT in a cross-sectional view, including all peripheral proteins, such as inner and
outer dynein arms (IDA and ODA, respectively) and the proximal radial spoke (RS1). The ODA and IDA rows are connected via the outer-inner dynein linker
(OID). Also visible are the I1α- and I1β-dynein heads of the I1 complex (dynein f). PF numbers according to Linck and Stephens (1) are colored pink in the A-
tubule (At) and dark blue in the B-tubule (Bt). The outer AB-junction (OJ) is highlighted in cyan, whereas the density of the inner AB-junction (IJ) is colored
purple. The blue, red, yellow, and orange arrowheads and colored densities identify MIP1, MIP2, MIP3, and MIP4, respectively.
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Fig. S2. Comparison of averaged DMTs from different studies and species demonstrates evolutionary conservation on a structural level. Tomographic slices
(A–D, A′–D′, A′′–D′′, and H–J), simplified graphical models (E and F), and isosurface renderings (E′, F′, E′′, F′′, and G) show the DMT structure in C. reinhardtii
axonemes (A–F and A′–F′) and sea urchin (S. purpuratus) flagella (A′′–F′′, H, and J) and isolated sea urchin DMT (I) in longitudinal (A–C, F, A′–C′, F′, A′′–C′′, F′′,
and H–J) and cross-sectional views from the distal side (D, E, D′, E′, D′′, E′′, and G). Red lines in (D, D′, and D′′) show the location and orientation of the
longitudinal slices shown in (A–C, A′–C′, and A′′–C′′), respectively. PFs of the A- and B-tubules (At and Bt, respectively) were numbered. The electron densities
for MIP1–3 are color-coded (including the arrows and arrowheads pointing at the MIPs): MIP1 (blue), MIP2 (red), and MIP3a and MIP3b (yellow and olive,
respectively). A comparison of our previously published results (A–F) (1) with our current findings (A′–F′) shows a significant resolution improvement and more
visible details. MIP1–3, the trimeric outer AB-junction (OJ) with channel (cyan arrows in H and I), the ladder-like inner AB-junction (IJ), and the hole in the IJ
(white arrows in H and J) are present in DMT of sea urchin sperm flagella (A′′–F′′ and H–J), suggesting that these features are conserved across species (compare
with Chlamydomonas axonemes in Fig. 2 and Fig. S2 A′–F′). Note that I shows a tomographic average of isolated DMTs; 16-nm-long segments were aligned and
averaged; therefore, the resolution is higher and the IJ-rungs with 8-nm periodicity (white lines) are clearly visible. (G) Overlay of the DMT from Chlamy-
domonas (red) and sea urchin flagella (blue) shows an almost identical position of densities in both species, except for the partition. In F′′, note the smooth
surface of the partition (viewed from the A-tubule) in sea urchin without filamentous or MIP4 densities. (Scale bars: A–C, A′–C′, A′′–C′′, and H–J, 20 nm; D, E, D′,
E′, D′′, E, and G, 10 nm). RS, radial spoke. [Images A–F are modified from Nicastro et al. (1)].

1. Nicastro D, et al. (2006) The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313:944e948.
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Fig. S3. Averaging of subsets of DMTs with similar orientation of the missing wedge results in visible artifacts, whereas the combination of DMTs with many
different orientations of the missing wedge allows for missing wedge compensation in the subtomographic averages. The tilt angle range of single-axis tilt
series is typically limited to about ±65°. The missing higher tilts result in missing information in the tomographic reconstructions. Because the area of missing
information is wedge-shaped in the Fourier transform of the imaged object, this phenomenon is called the “missing wedge.” The displayed tomographic slices
(A, B, D, and F) and isosurface renderings (C, E, and G) show different steps of subtomographic averaging and missing wedge effects. The two red boxes in the
30-nm-thick slice of a nonaveraged tomogram of a Chlamydomonas axoneme (A) highlight two DMTs that are approximately perpendicularly oriented to each
other. (B–E) Averaged DMTs using axonemal repeat units only from doublets that have the same relative orientation to the missing wedge of the re-
construction, respectively. The missing wedge artifacts are clearly visible in these uncorrected averages: The resolution is anisotropic [i.e., in one direction,
densities are missing (e.g., the inner AB-junction in E [red arrow]), and in the perpendicular direction, densities are elongated by a factor of 1.5 to 2 (1)
(elongation direction is indicated by double-headed black arrows)]. Note how different the two averages with biased orientations of averaged particles
appear. (F and G) However, by combining axonemal repeats from all nine DMTs from uncompressed axonemes, the missing information can be filled in to
compensate for the missing wedge, generating undistorted averages with evenly distributed electron densities in all directions. In C, E, and G, the tubulin
crystal structures (dark blue and pink) were placed into the electron densities. Sui and Downing (2) have proposed a DMT model, but the tomographic averages
were limited by a missing wedge of data and anisotropic resolution similar to the orientation-biased averages shown in D and E. Most of the isolated and salt-
extracted DMTs used in the latter study adopted similar orientations on the EM grid with the A- and B-tubules arranged parallel to the carbon support film, not
allowing for a correction of the missing wedge artifacts. In our study, to ensure that the densities seen in subtomographic averages are not distorted by the
missing wedge, uncompressed axonemes with DMTs in varying orientations in relation to the beam and tilt-axis were averaged, as shown in F and G.

1. Mastronarde DN (1997) Dual-axis tomography: An approach with alignment methods that preserve resolution. J Struct Biol 120:343e352.
2. Sui H, Downing KH (2006) Molecular architecture of axonemal microtubule doublets revealed by cryo-electron tomography. Nature 442:475e478.
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Table S1. Comparison and summary of two previous studies and the present study

Source Sui and Downing (1) Nicastro et al. (2) Present study

Conditions
Species S. purpuratus (sea urchin) Chlamydomonas and

S. purpuratus (sea urchin)
Chlamydomonas and S.

purpuratus (sea urchin)
Specimen Isolated salt-extracted

DMTs
Intact axonemes and flagella Intact flagella and axonemes,

with supplementary data
from isolated DMTs

Ice thickness <100 nm (tilt series
angular increment 3–4°)

>200 nm (tilt series angular
increment 1–2°)

>200 nm (tilt series angular
increment 1–2°)

Averaged segments Layer line filtering of
Fourier transform
(imposing 16-nm repeat)

96-nm axonemal repeats 96-nm axonemal repeats

Resolution/missing wedge ∼3 nm, anisotropic
because of missing wedge

4.3 nm, isotropic 3.3 nm, isotropic

Results
Outer AB-junction A10-A11-B1 trimeric

junction, steric clash:
A10-B1

A10-A11-B1 trimeric junction A10-A11-B1 trimeric junction
with channel steric clash,
B1-channel

Inner AB-junction — B11th component (thinner
than tubulin PF)

Ladder-like, 8-nm periodic IJ

A-tubule: MIP1 A4–A5 A5 (8-nm repeat) A5–A7 (alternating long and
short subunits, 16-nm repeat)

MIP2 — A9–A10 (16-nm repeat) A9–A10 (alternating long and
short subunits, 48-nm repeat)

B-tubule: MIP3 B9-B10-A12-A13 (16-nm
repeat, linker to partition)

B9–B10 (16-nm repeat, not connected
to partition)

B9–B10 (alternating long and
short subunits, 16-nm repeat,
not connected to partition)

Partition Filamentous density,
speculated to be tektin

— Chlamydomonas: bump-
shaped MIP4; sea urchin:
large density with
nonfilamentous smooth surface

1. Sui H, Downing KH (2006) Molecular architecture of axonemal microtubule doublets revealed by cryo-electron tomography. Nature 442:475e478.
2. Nicastro D, et al. (2006) The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313:944e948.

Movie S1. Cryo-ET provides unique insights into the 3D structure of DMTs in Chlamydomonas flagella. The animated isosurface rendering shows the DMT of
an averaged axonemal repeat in cross-sectional view. The blue-, red-, yellow-, and orange-colored densities identify MIP1, MIP2, MIP3, and MIP4, respectively.

Movie S1
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