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Living coyotes modify their behavior in the presence of larger
carnivores, such as wolves. However, little is known about the
effects of competitor presence or absence on morphological change
in coyotes or wolves over long periods of time. We examined the
evolution of coyotes and wolves through time from the late
Pleistocene, during which many large carnivorous species coexisted
as predators and competitors, to the Recent; this allowed us to
investigate evolutionary changes in these species in response to
climate change and megafaunal extinctions at the end of the
Pleistocene. We measured postcranial skeletal morphologies of
wolves (Canis lupus) and coyotes (C. latrans) from Pleistocene-aged
tar deposits, as well as early, mid, and recent Holocene populations
of both. We found few morphological differences between Pleis-
tocene and Holocene wolf populations. Conversely, we found
many differences in coyotes: Pleistocene coyotes were larger and
more robust than Holocene populations. However, within 1,000 y
of the megafaunal extinctions, coyotes are morphologically indis-
tinguishable from modern populations. We cannot attribute these
differences directly to climate change because modern coyotes do
not follow Bergmann’s rule, which states body size increases with
decreasing temperature. Instead, we suggest that Pleistocene coy-
otes may have been larger and more robust in response to larger
competitors and a larger-bodied prey base. Although we cannot
separate competition from predator-prey interactions, this study
indicates that the effects of biotic interactions can be detected in
the fossil record.

Pleistocene extinctions | Canidae | Rancho La Brea

Recent studies of coyotes (Canis latrans) and gray wolves (C.
lupus) demonstrate competition and antagonistic inter-

actions between these species when they are sympatric (1–7).
Coyotes often modify their behavior in response to antagonism
from wolves (2, 3, 5, 6). However, coyotes and wolves also re-
spond through body-size convergence when they are in direct
competition for small- to medium-sized prey (8).
Antagonism arises from the similar diets in the two species,

but wolves and coyotes differ significantly in their hunting styles.
Wolves are large-prey specialists that hunt in packs by means of
a long, enduring chase (9). In contrast, coyotes are commonly
solitary predators of small mammals, such as rodents and rabbits;
they kill by a pounce and subsequent shaking that breaks the
neck (10). However, coyotes can be opportunistic hunters with
highly plastic prey-killing behaviors because of their intermediate
size (11) and adaptability (10), and animosity between wolves
and coyotes occurs when their diets converge.
Ecologists studying species relationships tend to focus on biotic

interactions (12, 13) over, essentially, an instantaneous moment
in time, rather than on abiotic factors (for exceptions, see refs. 14–
16). Paleoecologists take the principles of ecology and add the
concept of deep time with varying levels of resolution (17). This
latter approach may focus on biotic interactions but must also
examine longer-scale abiotic factors, such as climate change, to
explain broader changes in species or assemblages through time
(12, 18). Coyotes and wolves have a clear recent ecological record
of competition and antagonism. Has this relationship been the

same throughout their evolutionary histories? Looking to the past
may illuminate how these species interactions have evolved.
Coyotes in the Pleistocene (C. latrans orcutti) were morpho-

logically distinct from extant coyotes. The skulls and jaws of C. l.
orcutti are significantly thicker and deeper than in Recent pop-
ulations. Pleistocene coyotes also had a shorter, broader rostrum
and wider carnassial teeth used for processing meat (19–21): all
adaptations for killing larger prey and dealing with higher
stresses during food acquisition and processing (22–25). These
characteristics suggest that C. l. orcutti was more carnivorous
than modern coyotes.
C. l. orcutti is found in large numbers in late Pleistocene (∼40–

11 Ka) deposits from three sites in Southern California (SoCal):
Rancho La Brea (RLB),Maricopa Brea, andMcKittrick tar seeps
(21) (Fig. 1). Pleistocene coyotes were part of a carnivorous guild
that contained multiple canids, including: foxes, the gray wolf, C.
lupus (only at RLB), and the dire wolf, C. dirus, which was larger,
more robust, and hunted larger prey than gray wolves (19, 26–28).
C. latrans is also present in earliest Holocene-aged pit 10 at RLB
(29, 30). Preliminary analyses of cranial material found pit 10
individuals to be smaller than those in older pits (19), suggesting
morphological differentiation between Pleistocene and Holocene
coyotes. However, to distinguish between biotic or abiotic factors
requires, a more quantitative statistical approach.
Changes in gray wolf or coyote morphology between Pleisto-

cene and Holocene populations may be attributable to either
species interactions or climate change or both. Here, we examine
wolves and coyotes across the Pleistocene–Holocene boundary,
taking into account both biotic and abiotic effects that may have
influenced their ecologies and morphologies. For our purposes,
the key changes that occurred at the end of the Pleistocene are the
major warming trend (abiotic) and the megafaunal extinctions
(biotic, the cessation of interactions with a now extinct fauna).
We examine the postcranial morphology of wolves and coyotes

from the Pleistocene, earliest Holocene, and Recent. We predict
that if climate is directly causing morphological change, then a
clear correlation will exist between body size and temperature (or
latitude), also known as Bergmann’s rule, in wolves and coyotes.
This effect should not only be present over the Pleistocene–Ho-
locene transition but also in modern species over a climate gra-
dient. It is difficult to assess biotic interactions in the fossil record,
but if climate change is not the direct cause of morphological
disparity, then competition and predator/prey interactions in the
Pleistocene must be considered as major factors.

Results
Wolves. Few differences were observed between Holocene and
Pleistocene gray wolves. Tibial tuberosity length (TiSL) (Tables
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S1 and S2) was significantly longer in RLB specimens than from
Holocene cave sites in Idaho (∼3–5 Ka) and extant populations.
Femur breadth (FeB) was significantly larger in RLB wolves than
mid-Holocene wolves. No significant differences were found for
any of the other 19 measurements.

Coyotes. Many significant differences were observed between
Pleistocene and Holocene coyotes (Table 1, Table S4, and Fig. 2).
SoCal coyotes were significantly smaller than other modern coy-
otes for 14 out of 21 measurements (Table S3). There were few
significant differences within Pleistocene coyote populations;
however, Maricopa had smaller means than the other two sites
and were not significantly different from Holocene populations.
Maricopa coyotes had high variances, potentially reflecting two
different morphs in the population (Table 1). Pit 10 coyotes were
smallest, followed by modern SoCal coyotes, other modern

coyotes, Holocene Cave coyotes, and Maricopa coyotes; McKit-
trick and RLB coyotes were largest.
RLB and McKittrick coyotes were significantly larger than

modern coyotes (both groups), and Holocene coyotes for most
measurements, but were not significantly different from each
other. Surprisingly, all RLB coyotes, including Holocene coyotes
from pit 10, had exceptionally short olecranon processes and
were significantly different from all other groups. This mea-
surement suggests that coyotes at RLB had exceptional cursorial
abilities in both the Pleistocene and the early Holocene, despite
the difference in body size between these two time intervals. See
Table 1 for mean values for all measurements (all coyotes) and
Table S4 for ANOVA P values for all Pleistocene coyotes.
A plot of coyote morphology versus time and climate (Fig. 3A)

shows a morphological shift at the end-Pleistocene, concurrent
with the megafaunal extinctions and climate change. A linear
regression showed no correlation between body size and mean
annual minimum temperature for modern coyotes (P value =
0.216; R2 = 0.040) or when Pleistocene specimens were included
(P value = 0.077; R2 = 0.029) (Fig. 3B). This demonstrates that
coyotes do not follow Bergmann’s rule and suggests that climate
is not the primary driving factor in coyote body size change.

Discussion
Wolves. Pleistocene wolves from RLB are not morphologically
distinct from Holocene specimens. The only difference between
the Pleistocene and Holocene populations is a larger tibial tu-
berosity, the insertion for the quadriceps and hamstring muscles.
This suggests that Pleistocene gray wolves had larger and
stronger muscles for take-off during a chase, but because there
are no concomitant changes in any other measurements, this
difference may not have any clear functional implications. Gray
wolves are not common at the tar pits, and this may be attrib-
utable to behavioral modification or competitive exclusion of

Fig. 1. Map of localities for coyote specimens used in this study. Modern
sites are in black; fossil sites are in gray. Arrows indicate fossil sites and are
numbered: RLB, 1; Maricopa, 2; McKittrick, 3; Idaho caves, 4. See Table S5 for
localities.

Table 1. ANOVA results for C. latrans comparisons

SoCal Modern Other Modern Holocene Caves Pit 10 RLB McKittrick Maricopa
Variable (n = 17) (n = 23) (n = 8–10) (n = 12–15) (n = 31–58) (n = 9–12) (n = 4–7)

Humerus
HuL 154.78 (6.90) 161.52 (8.41) 160.72 (6.90) 153.09 (5.51) 167.33 (6.70) 169.95 (7.08) 162.77 (10.67)
HuAPD 13.01 (0.84) 13.69 (1.05) 12.84 (1.22) 12.62 (0.79) 15.11 (0.97) 14.39 (0.86) 14.38 (1.44)
HuMLD 10.65 (0.70) 10.75 (0.56) 10.70 (0.82) 10.68 (0.73) 12.25 (0.86) 11.87 (0.32) 11.87 (0.66)
HuPCL 59.82 (3.48) 62.26 (4.45) 63.64 (6.93) 60.04 (4.57) 69.96 (5.00) 67.89 (3.73) 62.70 (3.97)
HuHTL 17.79 (1.63) 19.87 (1.69) 19.92 (1.37) 19.80 (0.81) 22.43 (1.14) 21.96 (0.97) 20.66 (1.65)
HuEB 28.26 (1.43) 29.37 (1.38) 29.27 (1.23) 27.89 (2.57) 32.04 (1.61) 32.32 (1.49) 31.14 (2.31)

Radius
RaL 162.87 (5.92) 168.15 (8.52) 163.66 (6.63) 157.27 (6.80) 173.61 (7.89) 176.01 (8.34) 167.12 (4.77)
RaAPD 7.04 (0.58) 6.87 (0.48) 6.53 (0.67) 6.97 (0.66) 8.22 (0.83) 8.46 (0.62) 7.97 (0.11)
RaMLD 11.00 (0.86) 12.09 (0.75) 11.42 (0.91) 10.96 (0.64) 13.19 (1.00) 13.17 (0.90) 13.03 (0.15)

Ulna
UlL 187.01 (8.06) 193.73 (9.79) 192.29 (8.17) 184.38 (12.85) 192.78 (7.37) 202.15 (7.51) None
UlOL 24.42 (3.52) 25.38 (3.19) 25.71 (1.28) 18.85 (1.59) 19.99 (1.26) 27.47 (1.05) None

Femur
FeL 172.03 (6.77) 176.66 (8.48) 177.16 (5.98) 168.99 (8.24) 185.08 (7.37) 188.95 (9.58) 176.20 (9.76)
FeAPD 11.02 (0.79) 11.45 (0.89) 11.83 (1.37) 10.89 (0.99) 12.52 (0.92) 12.89 (0.60) 11.89 (0.33)
FeMLD 11.22 (0.58) 11.54 (0.78) 11.49 (0.99) 11.34 (0.75) 12.86 (1.12) 12.87 (0.59) 12.65 (0.18)
FeGTH 25.48 (4.02) 44.06 (8.94) 32.43 (8.09) 27.17 (2.18) 29.99 (3.99) 27.49 (2.66) 26.22 (3.35)
FeHD 16.03 (0.83) 16.87 (0.85) 16.96 (1.14) 15.92 (0.74) 17.77 (1.14) 18.28 (1.07) 17.39 (0.93)
FeB 27.05 (1.22) 28.50 (1.39) 28.92 (1.87) 26.32 (2.01) 30.42 (1.80) 31.11 (1.85) 29.33 (1.70)

Tibia
TiL 181.84 (8.55) 190.44 (11.43) 182.15 (6.56) 174.76 (7.60) 193.32 (6.90) 196.83 (9.77) 191.46 (14.79)
TiAPD 11.48 (0.94) 12.14 (1.25) 11.66 (1.33) 10.94 (0.90) 12.99 (0.98) 13.06 (1.03) 12.25 (0.93)
TiMLD 11.09 (0.79) 12.09 (0.64) 11.14 (0.33) 10.72 (0.80) 12.80 (0.94) 12.32 (0.65) 11.95 (0.43)
TiSL 29.55 (2.58) 35.02 (5.04) 34.91 (4.91) 31.61 (2.93) 36.66 (3.02) 31.19 (2.78) 31.45 (4.47)

Mean ± SD for each locality and measurement used in this study. N for fossils is by individual element.
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gray wolves by dire wolves near the tar seeps. This is also in-
dicated by their absence at McKittrick and Maricopa and is
consistent with other studies (31, 32).
A small sample size of gray wolves may give a false-negative

result, but Leonard et al. (31) also noted the gracile nature of the
gray wolves at RLB (similar to living morphs) compared with
end-Pleistocene Alaskan and Beringian wolves. Geist (33) found
that living gray wolves in North America show a body size in-
crease with increasing latitude, but only up to 65� N; then, they
show a body size decrease again. In wolves, Geist argued that
body size trends are not due to climate, but food availability.
Other studies also suggest that body size gradients in carnivores
are directly dependent upon prey size, prey availability, and in-
terspecific interactions, rather than abiotic factors, such as cli-
mate (8, 11, 34–43).

Coyotes. We find a distinct morphological difference in coyotes
across the Pleistocene–Holocene boundary (for a discussion of
differences between Pleistocene sites, see SI Results). There was a
large shift in morphology concurrent with the megafaunal
extinctions and climate warming at the end of the Pleistocene
(Fig. 2). However, we observed no relationship between body size
and mean annual coldest temperature in modern coyotes (Fig.
3B); this provides additional evidence against Bergmann’s rule.
Our results are consistent with Thurber and Peterson (44), who
found no correlation between latitude and body mass in coyotes.
If climate change was the direct cause of end-Pleistocene body

size change in coyotes (that do not follow Bergmann’s rule), why
would this change not also appear in wolves (that do appear to
follow Bergmann’s rule) across the same time period? C. l. orcutti
was larger and more robust than its extant relatives (Table 1 and
Table S4), which can be corroborated by cranial evidence (19,
21). If living coyotes do not follow a simple pattern of larger body
size in colder climates (i.e., Bergmann’s rule), and we assume
that this pattern was not different in the Pleistocene, then end-
Pleistocene temperature change would not cause the body size
changes seen here. This finding is somewhat unsurprising, con-
sidering that biotic interactions are responsible for a multitude of
changes and trophic cascade effects that occur in modern eco-
systems (for a review see 45). Two possible biotic reasons for the

morphological differences seen in C. l. orcutti are: (i) a larger
prey base, both in body size and quantity; and (ii) competition
with larger carnivores.

Interactions with Prey. Increased large-sized prey availability in
the Pleistocene may have significantly contributed to the size
differences seen at the Pleistocene–Holocene boundary.
Schmitz and Lavigne (8) found that both living coyotes and

wolves changed in body size in response to prey availability. Coy-
otes are flexible in their prey-size preferences and increase the
proportion of large prey in their diet as they approach 21–25 kg,
the size at which carnivores switch from small prey to pre-
dominantly large prey (11). Bigger, more robust Pleistocene coy-
otes were approaching this critical size. Estimated mean mass of
coyotes at Maricopa was 18 kg (46), and coyotes from McKittrick
and RLB would have been even larger (see Table S4), suggesting
C. l. orcutti hunted larger prey than its living conspecifics. In the
Pleistocene, there were many prey species from which to choose,
including horses, sloths, camels, llamas, and bison. Juveniles of one
or more of those large-bodied species may have been suitable prey
for coyotes, because modern coyotes are known to kill ungulate
neonates when they are available (1).
C. l. orcutti also shows modifications of the crania and denti-

tion for hunting and killing larger prey, including robust jaws and
crania to accommodate large forces applied to the cranium and
large molars and carnassial teeth for increased bone-cracking
and meat-shearing capabilities, respectively (19–21, 24, 25). Van
Valkenburgh and Hertel (28) found that coyotes at RLB had
significantly more tooth breakage in their canines and premolars
than their living counterparts. They concluded that C. l. orcutti
had a higher frequency of tooth to bone contact than extant
coyotes, from eating larger bones.

Interactions with Competitors. Extant coyotes change both social
structure and diet in response to larger competitors/predators
(47). When gray wolves were absent from northwestern Montana
between 1980 and 1994, coyotes had minimal pack structure,
were usually solitary (66%) or occasionally in pairs (29%), and
ate mostly lagomorphs and rodents. Following wolf reintro-
ductions in 1995, coyote pack size increased to pairs (48%) and

Fig. 2. Box plot of femur circumference as a representative variable. Horizontal bars indicate the mean value; boxes indicate interquartiles, and whiskers (or
dots) represent the extreme values for each group. Pleistocene groups are indicated with a darker shade of gray than Holocene groups.
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groups of three or more (33%), and they showed a major shift in
diet from small prey to ungulates (47). Arjo and Pletscher (47)
hypothesized that this pack structure change was for defense
against wolves, and the dietary change was an increase in scav-
enging of carcasses left by wolves. Increased pack size in coyotes

also has important offensive consequences for prey-killing, and
many studies have documented that coyotes in large packs kill
ungulate prey (10, 48–50).
In the Pleistocene, C. l. orcutti coexisted with both gray wolves

and the larger, more robust dire wolf (19). From a competition
standpoint, the observed size increase in C. l. orcutti seems
suboptimal in the presence of both wolf species. However, if dire
wolves competitively excluded gray wolves (31, 32), larger coy-
otes would have been able to move into the “empty” gray wolf
niche. Nowak (21) also suggested that C. l. orcutti was filling
a more wolf-like role in the environment. Additional evidence
that Pleistocene coyotes were hunting in packs comes from their
large sample size at RLB. Coyotes are the third-most common
species found at RLB, after dire wolves and Smilodon, the saber-
toothed cat. Carbone et al. (51) suggested that Smilodon was
a social hunter at RLB because of its numbers at that site. They
based this hypothesis on African playback experiments in mod-
ern carnivores, where they found that only the largest, pack-
hunting species responded to distress calls of herbivores and
fighting noises of carnivores. They proposed a similar type of
scenario for RLB, where one herbivore would become mired in
the tar, drawing attention only from groups big enough to defend
themselves from the other carnivores present.

Humans As Competitors/Predators? Humans migrated to North
America at the end of the Pleistocene and may have impacted
coyote morphology, either directly or indirectly. Humans were
present at RLB, represented by the skeleton of a human female
recovered from pit 10, dated at 10.08 Ka (52). Recent humans
actively select against the biggest carnivores in an ecosystem,
which are seen as a threat to domestic animals and themselves. If
Pleistocene coyotes were more wolf-like, they may also have
been more aggressive. Therefore, it is possible that many of the
larger individuals of C. l. orcutti were killed by humans at the end
of the Pleistocene. This would leave smaller individuals behind
to repopulate, resulting in the morphology that we see today.
However, humans would have also competed with much larger
and more ferocious carnivores at the end-Pleistocene, such as
saber-toothed cats and dire wolves, rendering coyotes less
threatening. Indeed, there is no direct evidence of humans
hunting coyotes in the Pleistocene. Instead, humans may have
had indirect effects on large coyotes by killing off their prey base.

Conclusions
A large body of literature deals with the evolution of species or
communities attributable to species interactions, competition,
and predator–prey interactions on decadal time scales (53–57).
Still, few studies have demonstrated morphological evolution
attributable to species interactions (16, 58, 59). This study shows
that relatively rapid evolution in a large mammal can be attrib-
uted to biotic interactions.
C. l. orcutti was a larger, more robust, and more wolf-like

coyote than Holocene populations. The earliest Holocene coy-
otes from RLB pit 10 show a distinct change in morphology
within 1,000 y of the megafaunal extinctions. We show climate
was not directly affecting coyote size; therefore, climate change
at the end of the Pleistocene was unlikely the major cause of this
morphological shift. We do not dispute the effects of climate
change on coyote evolution; our results show that climate change
was not the direct cause of morphological change in coyotes.
Although climate was not directly responsible for this change, it
likely had indirect effects that would be hard to separate from
biotic interactions. The end-Pleistocene extinctions are thought
to be a product of climate change, which would have caused
a trophic cascade in all mammalian assemblages that both sur-
vived the event and went extinct (45).
Biotic interactions are the most likely cause for morphological

evolution in coyotes, but we cannot discern whether prey dis-

Fig. 3. (A) Plot of femur circumference versus time in Ka before present.
Data points correspond to morphology and time. All symbols are site aver-
ages. Solid symbols indicate Holocene groups, and open symbols indicate
Pleistocene groups. The temperature curve was adapted from Jouzel et al.
(75), and corresponds to time and temperature relative to the present; the
mean is indicated with a gray curved line, and the confidence intervals of the
curve are shaded. The horizontal black line indicates the end of the Pleis-
tocene extinction events. (B) Plot of mean annual minimum temperature
versus femur circumference to test for Bergmann’s rule in coyotes. Points
indicate individual specimens. The regression line is nonsignificant, is in-
cluded only for illustrative purposes (P = 0.216; R2 = 0.04), and includes only
modern individuals.
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appearance or competitive release was responsible for this shift.
Previous studies show that carnivore body size is influenced by
both competitors (38–42, 60) and prey species (8, 11, 34–36). In
this case, it was probably a combination of both. For example,
competition with larger predators causes coyotes to form larger
packs for defense (47), which makes them better able to catch
larger prey as a team (48–50).
The end-Pleistocene extinctions not only extirpated large

mammal species but also had a profound effect on the species
that did not go extinct (45). It is important to understand how
ecosystems function and change through time, and species
interactions are an integral part of any ecosystem (61–64). Some
of the carnivore species that were present at RLB are still extant
today (e.g., coyotes, gray wolves, mountain lions, etc.). However,
the niches that these predators filled in the Pleistocene may have
changed because of missing interactions with a now extinct fauna
and because abiotic conditions differ.
Modern studies comparing gray wolves to coyotes show that re-

moval of one apex predator has dramatic top-down effects on other
predator species, as well as prey species (1–3, 5, 44, 45). C. l. orcutti
was a larger-prey specialist than living coyotes, a trait that madeC. l.
orcutti better able to compete and survive in the carnivore-laden
Pleistocene. Both modern ecosystems and Pleistocene ecosystems
highlight the importance of species interactions, revealing the del-
icate balance that exists in both carnivore–carnivore and predator–
prey interactions. Eradication of a single (or multiple) carnivore
species has profound effects on the remaining species.

Methods
Wemeasured fore- andhind-limbsof coyotes fromdifferent localities through
time (Table S2 and Fig. S1). See Table S5 for locations and sample sizes. These
specimens included C. l. orcutti from the RLB tar pits, from pit 3 (approximate
mean age, 18.5 Ka), pit 4 (∼14.5 Ka), pit 16 (∼26.4 Ka), pit 60 (∼21.3 Ka), and
pits 61/67 (∼11.5 Ka) (30). An ANOVA was performed comparing individual
pits. Significant differences were found in humerus length (pit 4 was signif-
icantly larger than pit 61) and radius length (pit 4 was significantly larger than
pits 3 and 61/67; pit 16 was also significantly larger than pit 61/67). No other
significant differences were found for any measurements between any
Pleistocene pits at RLB. Therefore, Pleistocene RLB specimens were treated as
one group in subsequent analyses. Additionally, specimens were measured
from earliest Holocene pit 10 (∼6–10 Ka) to determine if these specimens are
morphologically distinct from older RLB coyotes.

We also measured coyotes from California Pleistocene tar seeps: (i)
McKittrick tar pits; and (ii) Maricopa Brea. McKittrick has two radiocarbon
dates on plant material at 38 K ± 2.5 Kybp and 12.2 K ± 250 ybp (46, 65).
Maricopa Brea also has two radiocarbon dates which range in age from 36 K±
3.9 Kybp (dire wolf) to 13.8 K ± 420 ybp (wood) (66).

We measured C. latrans from two pre-European Holocene sites in Idaho
[Middle Butte Cave (< 8 Ka) and Moonshiner Cave (∼3 Ka) (67)] and from
extant populations from Arizona, California, Colorado, Montana, North
Carolina, Nebraska, North Dakota, and Wyoming (Fig. 1). Extant subspecies
included C. l. latrans, C. l. lestes, C. l. mearnsi, C. l. merriami, C. l. ochropus,
and C. l. frustor (n = 40). These subspecies likely represent present diversity in
coyotes. We analyzed the SoCal coyote subspecies (C. l. ochropus; n = 17)

separately from all other subspecies because this group likely represents the
descendants of the Pleistocene coyote populations.

All other coyotes were included together as one group. To determine
whether this groupingwas acceptable,we compared the total group variation
to the variation in the largest non-California group, North Carolina (n = 14/23
total). The sample from North Carolina was large and varied enough that the
morphological diversity of the other modern coyotes measured fell within
the North Carolina range (>90%) and were as large as coyotes from all of the
other states. Given this predominant similarity, we treated all of the
remaining extant coyote subspecies as a single group in subsequent analyses.

Although sexual dimorphism is not extreme in canids, it is present (68);
thus, for all modern samples, we attempted to measure equal numbers of
males and females.

C. lupuswas analyzed from RLB, the two Holocene cave sites in Idaho, and
recent populations from Alaska, Arizona, Montana, Nebraska, North Caro-
lina, and North Dakota (Table S6). There has been some debate as to
whether Eastern wolves are a different species from gray wolves (69).
However, the one wolf specimen from North Carolina fell within the range
of variation of other gray wolf specimens; thus, all modern wolves were
treated as a single group in subsequent analyses. No gray wolf specimens
were available from McKittrick, Maricopa, or RLB pit 10.

We chose limb measurements based upon their ability to predict loco-
motor mode and functional performance in carnivores (70, 71) and rodents
(72). We analyzed these measurements with multiple one-way ANOVA tests
using Tamhane (for unequal variance) and Scheffé (for equal variance) post
hoc procedures. We performed a Levene test of homogeneity of variances to
determine which post hoc test was appropriate. We performed all statistical
analyses using SPSS version 19 (SPSS). We used raw measurements instead of
ratios, and we did not perform any multivariate analyses, because of the fact
that fossil specimens are disarticulated and random, and measurements that
compare two bones (e.g., radius length to humerus length) would only be
possible using averages; this method would effectively reduce the sample
size of each group to one. To visualize where each of these groups fell in
shape space, we constructed bivariate plots with time on the y axis and
morphology on the x axis, with climate overlaid on top (Fig. 3A).

To examine the effects of climate, we plotted femur circumference, a good
proxy for body size in canids (73, 74), against mean annual coldest temper-
ature for each locality to look for correlations. We obtained mean annual
coldest temperatures for modern specimens by identifying the nearest town
(within 5miles) to the collection locality of each coyote using themost precise
data available (either the county in which it was collected or latitude and
longitude coordinates) and looking up average temperature data for this
town on the National Weather Service website (www.weather.gov). For fossil
sites, we identified the weather conditions for the locality in the present, and
then using data from Jouzel et al. (75) and the approximate age for the lo-
cality, we subtracted the appropriate number of degrees Celsius.
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