Cardiomyocytes from AKAP7 knockout mice respond normally to adrenergic stimulation

Brian W. Jones, Sylvain Brunet, Merle L. Gilbert, C. Blake Nichols, Thomas Su, Ruth E. Westenbroek, John D. Scott, William A. Catterall, and G. Stanley McKnight

Protein kinase A (PKA) is activated during sympathetic stimulation of the heart and phosphorylates key proteins involved in cardiac Ca2+ handling, including the L-type Ca2+ channel (Ca\textsubscript{v}1.2) and phospholamban (PLN). This results in acceleration and amplification of the beat-to-beat changes in cytosolic Ca2+ in cardiomyocytes and, in turn, an increased rate and force of contraction. PKA is held in proximity to its substrates by protein scaffolds called A kinase anchoring proteins (AKAPs). It has been suggested that the short and long isoforms of AKAP7 (also called AKAP15/18) localize PKA in complexes with Ca\textsubscript{v}1.2 and PLN, respectively. We generated an AKAP7 KO mouse in which all isoforms were deleted and tested whether Ca2+ current, intracellular Ca2+ concentration, or Ca2+ reuptake were impaired in isolated adult ventricular cardiomyocytes following stimulation with the β-adrenergic agonist isoproterenol. KO cardiomyocytes responded normally to adrenergic stimulation, as measured by whole-cell patch clamp or a fluorescent intracellular Ca2+ indicator. Phosphorylation of Ca\textsubscript{v}1.2 and PLN were also unaffected by genetic deletion of AKAP7. Immunoblot and RT-PCR revealed that only the long isoforms of AKAP7 were detectable in ventricular cardiomyocytes. The results indicate that AKAP7 is not required for regulation of Ca2+ handling in mouse cardiomyocytes.

The key determinants of cardiac output—the force of contraction and rate of relaxation—are rooted in the amplitude and kinetics of Ca2+ transients that occur in individual cardiomyocytes. Adrenergic stimulation initiates cAMP-dependent signaling pathways that activate PKA leading to phosphorylation of numerous proteins that are critical for Ca2+ entry, release, and reuptake, as well as sarcomeric proteins more closely associated with contraction, such as myosin-binding protein C and troponin I. This phosphorylation amplifies Ca2+ influx through voltage-gated Ca2+ channels (Ca\textsubscript{v}1.2 in the ventricle) and the corresponding increase in Ca2+-induced Ca2+ release from the sarcoplasmic reticulum (SR) throughryanodine receptors augments contractility. Equally important is the enhanced removal of Ca2+ from the cytosol that allows the heart to relax more quickly during diastole, which is accomplished primarily by phosphorylating phospholamban (PLN), which in turn relieves PLN inhibition of the sarcoplasmic reticulum Ca2+ ATPase (SERCA).

Distinct, localized actions of PKA are coordinated in two ways: (i) cAMP production and hydrolysis are restricted by the subcellular localization of cyclases and phosphodiesterases, respectively, and (ii) PKA is directed to specific subcellular sites by binding to an assortment of protein scaffolds known as A kinase anchoring proteins (AKAPs) (1). By directing PKA to specific subcellular sites, AKAPs determine not only the specificity of protein anchoring proteins, but also the speed with which these systems respond to adrenergic stimulation. Some AKAPs are implicated in clinically relevant cardiac signaling events (2–4). For example, regulation of potassium channel current in the heart depends on formation of complexes containing AKAP9 (yotiao), PKA, and the inward rectifier potassium channel or subunit (KCNQ1); an inherited single point mutation in AKAP9 impairs AKAP9–KCNQ1 interaction and ultimately leads to long QT syndrome (4). AKAP7 is expressed as a family of alternatively spliced anchoring proteins that bind all isoforms of PKA regulatory subunit, albeit with different affinities. The shortest variant, AKAP7α, was detected as a protein band that copurified with rabbit skeletal muscle L-type Ca2+ channel, Ca\textsubscript{v}1.1, and interacted with purified PKA–RII in a far Western assay (5). Because the band ran at 15 kDa, it was named AKAP15. Another study identified a cDNA from a human fetal brain expression library that encoded a novel RII-binding protein of 81 aa, reported as AKAP18 (6). Further cloning and mass spectrometry revealed that AKAP15 and AKAP18 are the same protein arising from the Akap7 gene (6, 7). To date, four different transcripts of Akap7 have been identified in several species that are translated into specific polypeptides designated by increasing length as α, β, γ, and δ (Fig. 1) (5, 6, 8, 9). The functional significance of AKAP7α was determined by several studies that looked at its role in regulating ion channel activity. Direct interaction between AKAP7α and L-type Ca2+ channels was shown to rely on a modified leucine zipper (LZ) domain found in all AKAP7 isoforms, and competing peptides based on this interacting sequence prevented PKA regulation of endogenous Ca2+ channels in cardiac and skeletal muscle cells (10, 11). In addition to copurifying with rabbit skeletal muscle L-type Ca2+ channel (5), AKAP7α was shown to modulate cardiac or skeletal L-type Ca2+ channels exogenously expressed in cultured cells (6, 12) and to copurify with and modulate rat brain voltage-gated Na+ channels (13–15). Based on its requirement for reconstitution of cAMP-regulation of CaV1.2 channels in nonmuscle cells, it was proposed that AKAP7α is required for normal adrenergic up-regulation of L-type Ca2+ current in cardiomyocytes (11, 12).

The longest isoform, AKAP7δ, was also reported to affect intracellular Ca2+ in cardiomyocytes, but in this case via indirect regulation of SERCA via PLN (16). AKAP7δ in rat heart binds to PLN and coordinates its phosphorylation by PKA. A recent study reported that AKAP7α in rat heart also coordinates PKA phosphorylation of inhibitor-1 (17), which in turn inhibits protein phosphatase 1 (18). Because protein phosphatase 1 is the major phosphatase responsible for dephosphorylating PLN (18, 19), this suggests that the long isoforms of AKAP7 may coordinate both phosphorylation and dephosphorylation of PLN.

These reports suggest that genetic deletion of AKAP7 would result in decreased phosphorylation of cardiac Ca\textsubscript{v}1.2 and PLN in response to adrenergic stimulation and manifest phenotypes related to impaired cardiac Ca2+ handling in two ways: first, by decreased Ca2+ entry through Ca\textsubscript{v}1.2; and second, by slowed Ca2+ reuptake via SERCA. We generated a whole animal knockout of AKAP7 by targeting the RII-binding and ion channel interaction exon shared by all four isoforms and examined Ca2+ channel regulation and protein phosphorylation in isolated adult ventric-
ular myocytes stimulated with the β-adrenergic agonist isoprenaline (ISO). Surprisingly, we found that deletion of AKAP7 does not result in deficits in adrenergic stimulation of Ca2+ handling or phosphorylation of PLN or CaV1.2. Moreover, using both Western blot and RT-PCR we found that although AKAP7β/δ are expressed in cardiomyocytes, there is no detectable expression of AKAP7α/β in isolated cardiomyocytes from mouse or rat.

Results

Generation of AKAP7 KO Mice. Four splice variants of Akap7 exist that apparently arise from three separate promoters (Fig. 1A). To disrupt expression of all isoforms, we used Cre/loxP recombination to delete the only common exon, which we refer to as exon 7 (Fig. 1B). This exon contains the modified leucine zipper motif (LZ), palmitoylation and myristoylation of N-terminal residues in exon α confer membrane targeting; long isoforms contain a nuclear localization sequence (NLS) and 2H phosphoesterase domain. (B) Diagram of Akap7 knockout strategy, which targets exon 7, including the 3'-UTR. Restriction sites, Flp and Cre recombination sites, and location of PCR primers are shown. (C) Southern blot of HpaI-cut DNA from Meox2+/Cre x Akap7lox/lox mice. (D) PCR using specific primers, and (E) immunoblot of brain lysate to confirm successful disruption of Akap7 probed with GST-AKAP15 antibody (7).

Expression of AKAP7 Protein and mRNA in Various Tissues. Several studies have reported AKAP7 expression in various tissues by Northern blot of rat or human tissue (6–9). At least two AKAP7 transcripts exist (of 2.4 and 4.3 kb), and there are notable differences in their tissue-specific expression among species (6–9). Thus, we performed immunoblots and RT-PCR with mouse tissues to clarify where AKAP7 is expressed in mouse and to better predict the effect of its deletion in the KO animal. We also isolated adult ventricular cardiomyocytes—the focal cell type of our study—so we could avoid contamination from other cell types in the whole heart; i.e., fibroblasts, nervous tissue, vasculature, etc.

An antibody raised against a GST fusion of AKAP7α has been used previously to probe for AKAP7α in heart lysates by immunoblot (7, 11). This antibody detected AKAP7α in brain lysates, but also detected a nonspecific band near 15 kDa in KO heart lysates, which interfered with interpretation of protein expression (Fig. S1). Due to this concern over antibody specificity, we switched to a different anti-AKAP7 β-protein (Proteintech; 12591-1) that does not detect low molecular weight nonspecific bands in heart. Two faint bands at ~37 and ~42 kDa were detected by immunoblot in all WT but not KO tissue lysates and correspond to the reported molecular weights of AKAP7γ and AKAP78, respectively (Fig. 2A). A 15 kDa protein, AKAP7α, was highly expressed only in brain and weakly in lung lysates from WT animals. It was possible that our inability to detect AKAP7α in some tissues was due to very low expression levels, so we immunoprecipitated protein from tissue extracts to concentrate and enrich AKAP7. We were able to enhance the AKAP7α signal from brain and lung and detect very faint bands in heart tissues, but isolated cardiomyocytes, skeletal muscle, and kidney inner medulla still showed no AKAP7α (Fig. 2B).

β-Adrenergic Stimulation of Ca2+ Phosphorylation Is Normal in AKAP7 KO Cardiomyocytes. The fact that AKAP7α is not detectable in murine cardiomyocytes led us to hypothesize that it is not required for regulating CaV1.2 function in this cell type. However, the long isoforms are expressed in cardiomyocytes and contain the same leucine zipper domain (Fig. 1A) shown to be essential for AKAP7α-CaV1.2 interaction in vitro, so we examined whether AKAP7 deletion impaired normal CaV1.2 function.

Isolated adult ventricular cardiomyocytes were stimulated in vitro with increasing concentrations of ISO (0.1–1,000 nM) and collected for SDS/PAGE and immunoblot. There were no differences between WT and KO in the amount of CaV1.2 expressed when normalized to GAPDH and the degree of phosphorylation of CaV1.2–Ser1928 was identical for WT and KO at all concentrations of agonist (Fig. 3). Although this site is not essential for regulating CaV1.2 function (20), it is an established PKA phosphorylation site and reflects activation of PKA in close proximity to CaV1.2 (21).
of all three genotypes had a similar capacitance and vehicle-treated current–voltage relationship (Fig. S5). Together, these findings show that there is no requirement for any isoforms of AKAP7 in CaV1.2 regulation and suggest that another AKAP fulfills this role in mouse cardiomyocytes. Additionally, PKA RIIα coimmunoprecipitated with CaV1.2 from WT, 5KO, 7KO, and DKO heart, indicating that the two proteins are part of a complex that does not require AKAP5 or AKAP7 (Fig. S4). RII overlay on AKAP5/7 DKO heart lysates did not reveal up-regulation of any AKAPs that might compensate for loss of AKAP5 and/or AKAP7 (Fig. S5).

β-Adrenergic Regulation of PLN Phosphorylation/Dephosphorylation and Ca2+ Transients Is Unaffected in AKAP7 KO Cardiomyocytes. Published reports propose a model where AKAP7γ/6 coordinates a multimolecular complex including PKA, inhibitor-1, and protein phosphatase 1 in the regulation of PLN (16, 17). We tested this model by stimulating isolated adult ventricular cardiomyocytes in vitro with ISO for 7 min before adding the β-adrenergic antagonist propranolol (1 μM) and monitoring the decay of phospho-Ser16 on PLN. Phosphorylation of PLN decayed with a half-life of 2 min and there was no difference between WT and KO cardiomyocytes in the rate or extent of dephosphorylation of PLN over 16 min (Fig. 5 C and D).

PLN is primarily a negative regulator of SERCA, and relief of this inhibition following adrenergic stimulation is the primary cause of increased peak intracellular Ca2+ during contraction and rapid Ca2+ reuptake into the SR during relaxation (26). We asked whether AKAP7 KO cardiomyocytes displayed altered Ca2+ handling by measuring intracellular Ca2+ concentrations with the Ca2+ indicator Fluo-4 in isolated cardiomyocytes paced at 1 Hz. We observed no difference in the basal or ISO-stimulated amplitude of the Ca2+ transient or in the rate of reuptake of Ca2+ into the SR (Fig. 5 E and F). In summary, we found no evidence that AKAP7 is required for PLN–SERCA regulation.

Phosphorylation of CaV1.2 and PLN Requires PKA. Having observed that AKAP7 is not required for normal CaV1.2 or PLN activity or phosphorylation, we considered whether another kinase might compensate in AKAP7 KO. We repeated experiments that measured phosphorylation of CaV1.2 and PLN, this time incubating the isolated cardiomyocytes with PKA inhibitors before the application of ISO. H89 blocks PKA by competitive inhibition of the ATP-binding site on the catalytic subunit and 8-(4-chlorophenylthio)adenosine-3′,5′-cyclic monophosphorothioate, Rp-isomer) (Rp-8-CPT-cAMPS) occupies the cAMP-binding site on the PKA regulatory subunit but does not promote holoenzyme dissociation. Both PKA inhibitors significantly inhibited phosphorylation of PLN and CaV1.2 and the degree of inhibition was identical between genotypes (Fig. 6), indicating that PKA activity is responsible for these phosphorylation events and that KO cardiomyocytes do not use an alternative or compensatory pathway.

Discussion

Peptides derived from the PKA-binding domain of an AKAP can be used to competitively inhibit PKA anchoring, and several reports have used this technique to establish the involvement of AKAPs in cardiac Ca2+ handling. Adenovirally expressed H331 (derived from AKAP13) (27) in rat hearts reduced PLN phosphorylation (28) as did treatment of isolated rat cardiomyocytes in vitro with AKAD (derived from AKAP10) (29). Conversely, the small molecule, 3′,3′-diamino-4,4′-dihydroxyphenylmethane phosphorylation of PLN in AKAP7 KO cardiomyocytes was normal for all concentrations of agonist as detected with a phospho–site-specific antibody against the PKA target site on PLN, Ser16 (Fig. 5 A and B). To test the role of AKAP7γ in coordinating the dephosphorylation of PLN, we stimulated cardiomyocytes in vitro with ISO for 7 min before adding the β-adrenergic antagonist propranolol (1 μM) and monitoring the decay of phospho-Ser16 on PLN. Phosphorylation of PLN decayed with a half-life of 2 min and there was no difference between WT and KO cardiomyocytes in the rate or extent of dephosphorylation of PLN over 16 min (Fig. 5 C and D).

Fig. 2. AKAP7γ is expressed in brain but not in cardiomyocytes or skeletal muscle. (A) Lysates of various tissues from WT or AKAP7 KO mice were probed by immunoblot using rabbit polyclonal anti-AKAP7 antibody 12591-1. Long isoforms, ∼37–42 kDa, are faintly detected in all WT tissues. Some nonspecific bands (e.g., ∼55 kDa) are observed in tissue from WT and KO animals. Total protein was measured by BCA assay and 80 μg were loaded per lane; GAPDH and β-actin are shown as additional loading controls. (B) AKAP7 was immunoprecipitated from lysates using guinea pig anti-AKAP7 YO869 antibody to enrich protein before probing via immunoblot as above. The single band at 15 kDa corresponds to AKAP7γ and is only weakly detected in nonbrain tissues. RAt, right atrium; Vent, ventricle; CMym, isolated cardiomyocytes; SkM, skeletal muscle (quadriceps); IMed, kidney inner medulla. (C) Quantitative RT-PCR using Taq-Man MGB probes detected AKAP7 long isoforms in all tissues, but short isoforms only appreciably in the brain.

Fig. 3. Adrenergic stimulation results in phosphorylation of CaV1.2 in AKAP7 KO cardiomyocytes. (A) Isolated cardiomyocytes from WT or AKAP7 KO were stimulated with increasing concentrations of ISO for 7 min and phosphorylated CaV1.2 (Ser1928) was detected by immunoblot. (B) Densitometry of immunoblots from at least three experiments showed no difference between WT and KO. Values were normalized to percent maximum to allow comparison between experiments; shown are SEM.
brane targeting does not preserve ISO-sensitive AKAP7-leucine zipper peptide disrupts ISO up-regulation of Ca2+ channel expression between species. Alternatively, the presence of small amounts of AKAP7α in mouse heart lysates, but not in isolated cardiomyocytes, suggests that the protein is expressed in non-muscle cells in complex tissues. Therefore, it will be important in future studies to measure AKAP7α protein and mRNA in isolated cardiac and skeletal myocytes from multiple species, including human.

Biochemical and physiological approaches in this report also show that AKAP7γ/δ is not essential for normal Ca2+ handling because AKAP7 KO cardiomyocytes were normal in all parameters tested. Clearly this does not preclude any AKAP7γ/δ interaction with PLN, but does suggest that another unidentified AKAP is primarily responsible for anchoring PKA in PLN-SERCA complexes. Thus, our data call for reexamination of the established model and suggest that other AKAPs are responsible for anchoring PKA near CaV1.2 and PLN.

At least 14 AKAPs have been detected in heart, although it is not clear how many are in cardiomyocytes specifically (1, 33-37). A modified leucine zipper domain in AKAP5 and AKAP7 is essential for direct interaction with CaV1.2 expressed in heterologous cells (11, 25). In this study we show that neither AKAP5 nor AKAP7 are required for PKA anchoring to CaV1.2 in cardiomyocytes. Nevertheless, the fact that a leucine zipper peptide disrupts up-regulation of Ca2+ current in cardiomyocytes (11) suggests that the relevant AKAP in cardiomyocytes likewise contains a leucine zipper. Candidate AKAPs include AKAP6 (mAKAP) (38), AKAP9 (yotiao) (39), and possibly AKAP13 (AKAP-Lbe) (40).

Because the short form of AKAP7, AKAP7α, was not detectable in mouse or rat cardiomyocytes, its contribution to PKA anchoring in other tissues will be the focus of future studies. AKAP7α is highly expressed in the brain (Fig. 2) and was shown to copurify with brain sodium channels (13, 14, 41) and Ca2+ channels (15). We previously established model and suggest that other AKAPs are responsible for anchoring PKA in PLN-SERCA complexes. Thus, our data call for reexamination of the established model and suggest that other AKAPs are responsible for anchoring PKA near CaV1.2 and PLN.

As shown in Fig. 4, L-type Ca2+ channel currents are up-regulated by adrenergic stimulation in AKAP7 KO cardiomyocytes. (A–C) Effect of ISO (1 μM) on L-type Ca2+ current-voltage relationship recorded from (A) WT, (B) AKAP7 KO, or (C) AKAP7/δ double knockout (DKO) cardiomyocytes. Inset, single-cell traces. (Scale bar, 5 pA/pF and 50 ms.) Shown are SEM; *P < 0.01 by Student t test. (D) Comparison of calcium current recorded from vehicle- or ISO-treated cardiomyocytes. Shown are SEM; NS, P > 0.05.

Previous evidence supported the conclusion that AKAP7α anchors PKA to CaV1.1.1 of endogenous Ca2+ current (ICa) in neonatal rat or adult rat or mouse cardiomyocytes (11, 31, 32). Another peptide, derived from the leucine zipper domain on AKAP7 and designed to competitively inhibit AKAP–CaV1.2 interaction, has a similar effect (11). These approaches demonstrate that PKA anchoring near CaV1.2 and PLN is essential in mouse and rat cardiomyocytes and that the required AKAP interacts via the modified leucine zipper motif. However, these results do not reveal the identity of the specific AKAP if more than one AKAP can interact via the modified leucine zipper motif. The prevailing models identify AKAP7 or possibly AKAP5 as the critical AKAP (1, 33-37).

The results here (Fig. 4 and Fig. S2) demonstrate that this conclusion cannot be extended to other species. Our results with KO tissues as a negative control revealed that AKAP7α is not required for Ca2+ channel regulation in mouse heart because AKAP7 KO cardiomyocytes had normal whole-cell Ca2+ current (Fig. 4) and AKAP7α was not detected in dissociated cardiac myocytes by the sensitive methods used here (Fig. 2 and Fig. S2). The fact that AKAP7 was previously identified in rabbit skeletal muscle by mass spectrometry (7) but is not detectable in murine skeletal muscle (Fig. 2 and Fig. S2) raises the question of whether there are differences in AKAP7α expression between species. Alternatively, the presence of small amounts of AKAP7α in mouse heart lysates, but not in isolated cardiomyocytes, suggests that the protein is expressed in non-muscle cells in complex tissues. Therefore, it will be important in future studies to measure AKAP7α protein and mRNA in isolated cardiac and skeletal myocytes from multiple species, including human.
channels (42). AKAP7α has not been reported to interact with any proteins other than ion channels and PKA. It will be of interest to use our AKAP7 KO mouse to analyze the functional role of this AKAP in ion channel regulation in the brain.

Materials and Methods

Generation of KO Mice. The KO vector shown in Fig. 1B contained an frt-flanked neomycin resistance gene placed in the intron before exon 7 with loxP sites inserted upstream of the neo cassette and downstream of the coding region of exon 7. A chimeric (85%) male was crossed with C57/B6 females and their AKAP7-flox offspring were crossed with Mox2-flx mice to delete the flxed exon 7 in the germ line. DNA isolated from Mox2-flx x AKAP7-flx mice was cut with Hpal and probed by Southern blot as described (43), revealing a 5.7-kb band diagnostic of the recombined gene. Heterozygotes were also identified by PCR (Fig. 1 C and D), back-crossed onto C57/Bl6 for seven generations, and crossed to yield WT and AKAP7 KO littermates. AKAP5 KO mice (44) were crossed to AKAP7 KO mice to generate AKAP7/5KO mice, which were healthy and fertile. All protocols were approved by the University of Washington Institutional Animal Care and Use Committee.

Southern Blotting and PCR. Southern blot analysis identified positive ES clones using a 672-bp probe located 3426 bases upstream of the exon 7 splice site. Southern blots detected a 7-kb fragment of AKAP7 in wild type and a 5.7-kb fragment in KO. For routine genotyping, tail DNA was purified using the NucleoSpin Tissue kit (Macherey-Nagel) and analyzed by PCR with DreamTaq DNA Polymerase (Fermentas) using the following primers: KO allele, 5′-TATTTCCAGCGTGCTAAACAG-3′ (forward) and 5′-TCTGGCTGAGTCTCAGGCT-3′ (reverse); WT or floxed allele, 5′-TACGCTTCTGCTGCCTAC-3′ (forward) and 5′-TACGCTTCTGCTGCCTAC-3′ (reverse). Total RNA was isolated from freshly dissected mouse tissues using the Neurexina kit (Macherey-Nagel) and analyzed by PCR with DreamTaq DNA Polymerase (Fermentas) using a 672-bp probe located 3426 bases upstream of the exon 7 splice site.

In Vitro Phosphorylation and Dephosphorylation of PKA Substrates. Cultured isolated cardiomyocytes were stimulated by addition of a 20% volume of ISO to freshly dispersed cardiac myocytes from mice or rat that were isolated by enzymatic digestion and gentle dissection essentially as described (47). Cells used for Ca2+ transients were maintained in external control solution (140 mM NaCl, 5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 10 mM glucose, 10 mM Heps, pH 7.4) at room temperature for 0.5–3 h. Cells used for phosphorylation assays were plated at ~50,000 cells per dish in chemin-coated dishes, maintained in high calcium solution with 500 nM 8-CPT-RcAMPS (BioLOG) for 45 min before addition of ISO for 7.5 min. Dephosphorylation was initiated by adding 1 μM propranolol to cells that had been stimulated for 10 min with ISO. All reactions were stopped by adding 1 μM H89 (New England Biolabs) and 8-CPT-RcAMPS (Biolog) for 45 min before addition of ISO for 7.5 min.

For whole-cell voltage clamp recordings of ICa,L with Ba2+ as charge carrier [ICa,L(Ba2+)] the extracellular solution contained: 1.8 mM BaCl2, 140 mM NaCl, 10 mM HEPES, 5 mM KCl, and 1 mM MgCl2. A solution containing 140 mM NaCl, 5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 5 mM glucose, 5 mM HEPES (pH 7.4) was used to control the cell. Cells were stimulated for 10 min with ISO. All reactions were stopped by adding 1 μM H89 and 1 μM 8-CPT-RcAMPS to the bath solution.
tritylthalamonium (TEA), 2 mM MgCl₂, 10 mM d-glucose, 10 mM HEPES (pH 7.3). The intracellular solution contained: 100 mM CsCl, 20 mM TEA, 10 mM MgATP, 1 mM MgCl₂, pH 7.5.

Voltage-clamp data were compiled and analyzed using IGOR Pro (WaveMetrics) and Excel (Microsoft). Peak Ca²⁺(Ca⁺⁺) was measured during 300 ms depolarization from a holding potential of ~50 mV to potentials between ~50 and 50 mV. Ca²⁺ density (pA/pF) was defined as the peak current elicited by the voltage depolarization normalized to the whole-cell membrane capacitance within the same myocyte. Data are presented as mean ± SE. Statistical significance was evaluated using paired Student t test (Fig. 4 A–C) or one-way ANOVA with Bonferroni’s post hoc test (Fig. 4 D).

Ca²⁺ Transients. Intracellular Ca²⁺ was measured in isolated adult ventricular cardiomyocytes essentially as described (49). Cells were perfused for 30 min with the fluorescent Ca²⁺ indicator Fluo-4 AM (Molecular Probes) before being transferred to a 2-ml chamber containing 20 ml solution. Cells were depolarized at 1 Hz and continuously perfused with external control solution with or without ISO.

Fluorescence was detected using a Bio-Rad Radiance 2000 system attached to a Nikon TE300 inverted microscope with 60× oil immersion lens and operated by LaserSharp 2000 (v. 4.0) software. Images of Ca²⁺ concentration was calculated from fluorescence intensity using the pseudoequation:

\[\text{Ca}^{2+} = \frac{F - F_0}{K_d/C_a} + 1 - F \]

where \(\text{Ca}^{2+} \) is the concentration constant of Fluo-4 AM at 22 °C (770 nM), \(F \) is the fluorescence intensity, \(F_0 \) is the resting fluorescence, and \(\text{Ca}^{2+}/C_a \) is the assumed resting Ca²⁺ concentration (100 nM).

Acknowledgments. We thank Emma White for excellent technical assistance. This work was supported by National Institutes of Health (NIH) Grants R01 GM32875 (to G.S.M.), R01 HL088366 (to J.D.S.), and R01 HL085372 (to W.A.C.). NIH Grant T32 HL07312 (Experimental Pathology of Cardiovascular Disease) supported B.W.J., and the American Heart Association (National Scientist Development Award) supported S.B.