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Mutations are the ultimate source of heritable variation for evolu-
tion. Understanding how mutation rates themselves evolve is thus
essential for quantitatively understanding many evolutionary
processes. According to theory, mutation rates should be mini-
mized for well-adapted populations living in stable environments,
whereas hypermutators may evolve if conditions change. How-
ever, the long-term fate of hypermutators is unknown. Using
a phylogenomic approach, we found that an adapting Escherichia
coli population that first evolved a mutT hypermutator phenotype
was later invaded by two independent lineages with mutY muta-
tions that reduced genome-wide mutation rates. Applying neutral
theory to synonymous substitutions, we dated the emergence of
these mutations and inferred that the mutT mutation increased
the point-mutation rate by∼150-fold, whereas themutYmutations
reduced the rate by ∼40–60%, with a corresponding decrease in
the genetic load. Thus, the long-term fate of the hypermutators
was governed by the selective advantage arising from a reduced
mutation rate as the potential for further adaptation declined.
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Mutations are the ultimate source of heritable variation for
evolution. Therefore, understanding how selection can

change mutation rates is crucial for quantitatively describing
evolutionary processes (1). More mutations are deleterious than
beneficial (2), and organisms from bacteria to eukaryotes encode
proofreading and repair enzymes that reduce mutation rates (3).
If selection for beneficial mutations is weak relative to selection
against deleterious mutations, then the rate of adaptation in
asexual populations is maximized at some intermediate mutation
rate (4). However, when populations encounter new environ-
ments, selection for beneficial mutations can be strong (5), and
much higher mutation rates may evolve. Indeed, surveys of lab-
oratory populations of microbes (6–10), clinical isolates of bac-
terial pathogens (11, 12), and some types of eukaryotic tumors
(13) have revealed a surprisingly high proportion of lineages
that have evolved genetic defects in repair pathways. These
hypermutators often have 10- to 100-fold increased mutation
rates, and such elevated mutation rates can accelerate the
progression of chronic diseases and the evolution of resistance
to therapeutic agents.
Hypermutable mutants can become established in asexual

populations while they adapt to changed environments owing to
their higher per capita probability of discovering rare beneficial
mutations compared with nonmutators (14–18). Although hy-
permutable genotypes should produce beneficial mutations at
a higher rate than their less mutable counterparts, they do not
necessarily increase the rate of adaptation to a corresponding, or
even measurable, degree. In large asexual populations, the
waiting time for new beneficial mutations to occur may be short
relative to the time required for a mutant to increase from

one individual to fixation in the population, assuming the ben-
eficial mutant is not lost by random drift (19); as a consequence,
the establishment of a hypermutator may have little effect on
the population’s rate of fitness gain (6, 14, 20–22). The rate and
effect size of beneficial mutations will also depend on how
well adapted the population is to its current environment (20).
Moreover, hypermutators are more likely to produce offspring
with deleterious or lethal mutations. As a consequence of this
tension between adaptation and genetic load, theory predicts
that populations of hypermutators should re-evolve lower mu-
tation rates after they have become well adapted to their current
environment (23–25). However, genetic constraints might pre-
vent this outcome (e.g., if repair genes have been deleted), and
little is known about the long-term fates of hypermutator lineages
in any setting. Here, by sequencing the genomes of Escherichia coli
from a 20-year experiment, we were able to observe and quanti-
tatively understand the rise and fall in mutation rates in an
evolving asexual population.
For over 50,000 generations, 12 populations of E. coli have

evolved in and adapted to a glucose-limited minimal medium with
daily 1:100 dilutions and regrowth (26). A frozen “fossil record”
of these populations has been archived at regular intervals, and
the bacteria from these historical populations can be revived and
analyzed at any time. We performed whole-genome resequencing
to identify the base substitutions in the genomes of 22 evolved
clones isolated at various times from one of the populations
(Table S1), and we reconstructed their phylogenetic relationships
from those mutations. It was reported previously that a hyper-
mutator with a frame-shift mutation in the gene mutT became
established in this population between 20,000 and 30,000 gen-
erations (27, 28). After the establishment of the hypermutator, we
detected subsequent reductions in the mutation rate along two
branches of the tree that partially compensated for the hyper-
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mutability, and these reductions were confirmed by performing
fluctuation tests. Moreover, we identified the molecular–genetic
basis for these changes, which were confirmed by inspection of
the mutational spectra along the various lineages. Applying
a maximum likelihood model, we then estimated the times of
emergence of the different mutator alleles and their associated
fitness effects.

Results and Discussion
Phylogenomic Analyses and Experimental Measurements of Mutation
Rates. Phylogenetic analysis of the sequenced genomes revealed
that the population had diverged into two deeply branched lin-
eages by 30,000 generations and that each lineage persisted until
at least 40,000 generations (Fig. 1A). Interestingly, clones that
were sampled from both branches at later times accumulated
mutations more slowly than did the earlier mutT isolates (Fig.
1B). The rate of accumulation of base substitutions was 62 per
thousand generations using clones 27K-D and 30K-B that were
sampled at 27,000 and 30,000 generations, respectively. For the
later branches shown in green (clones 30K-A and 40K-A) and
purple (clones 35K-C, 40K-B, and 40K-C), this rate had declined
to 22 and 28 per thousand generations, respectively, which in-
dicate reductions of ∼65% and ∼55%, respectively. However,
the mutation in the mutT gene had not reverted to its ancestral
state, even though that mutation was in a potentially mutable
tract of five cytosines. Experimental measurements of mutation
rates using Luria–Delbrück fluctuation tests also indicated sub-
stantial reductions in mutation rates along both evolutionary
branches (Fig. 1C). In these tests, the two basal mutT clones
(27K-D and 30K-B, sampled at 27,000 and 30,000 generations,
respectively), on average, produced mutants resistant to the
antibiotic rifampicin (RifR phenotype) at ∼73 times the rate of
the ancestral strain. Mutation rates were significantly lower in
later clones; the mutation rate to RifR of a 40,000-generation
clone on the first branch (40K-A) was reduced by ∼60% com-
pared with the early mutT clones, and rates in two 40,000-gen-
eration clones from the other branch (40K-B and 40K-C) were
reduced by ∼80–90%.

Identification of Antimutator Alleles and Mutational Spectra. The
MutT protein is a hydrolase that purges the cellular nucleotide
pool of oxidized guanine nucleotides (8-oxo-dGTP), which can
mis-pair with adenine and lead to A:T→C:G (adenine or thy-
mine to cytosine or guanine) transversions after DNA replica-
tion. Loss-of-function mutations in mutY, which encodes a DNA
repair glycosylase that excises mis-paired bases from DNA he-
lices, also lead to elevated mutation rates on their own (29).
However, mutY mutations have an antimutator effect in the
context of a MutT defect because MutY mis-repairs 8-oxoG:A

base pairs in DNA. The 60% reduction in overall mutation rates
reported in mutT mutY double mutants compared with mutT
single mutants (29) is similar to the rate changes we observed in
both the phylogenomic analysis (Fig. 1B) and fluctuation tests
(Fig. 1C). Indeed, genome resequencing showed that different
mutY mutations had occurred along the two mutT branches
sampled at 40,000 generations (Fig. 1A).
On one branch of the tree, a base substitution changed the amino

acid at position 40 in MutY from leucine to tryptophan (L40W),
whereas the other branch had a base substitution that introduced
a premature termination codon at amino acid 164 (164-stop). We
call the L40WallelemutY-E (for early) and the 164-stopmutY-L (for
late) because they were first identified in clones sampled at 30,000
and 35,000 generations, respectively. A previous analysis of mixed-
population sequencing data (28) found that the mutY-E allele was
present in 65% (51–78%; 95% confidence limits) of the population
at 30,000 generations and 39% (25–53%) at 40,000 generations. The
mutY-L allele was not detected at 30,000 generations, but it consti-
tuted 69% (51–83%) of the population at 40,000 generations. The
fact that the estimated frequencies for the two mutY alleles total
slightly over 100% at 40,000 generations is a consequence of sam-
pling variation at different genomic sites. In any case, these results
show the power of combining mixed-population and clonal analyses
for understanding the dynamics of genome evolution.
Changes in the mutational spectra along specific branches of the

phylogenetic tree also support the hypothesis that the evolvedmutY
alleles caused the reductions in mutation rates. Mutations after the
rise of the mutT hypermutator were highly skewed toward the A:
T→C:G transversions typical of this defect (29). This same overall
bias dominated along all of the later branches in the tree (Table 1),
but the proportion of C:G→A:T substitutions increased from only
2/414 in the initialmutT genetic background to 38/274 in themutT
mutY-E lineage (one-tailed Fisher’s exact test, P = 4 × 10−14) and
24/319 in the mutT mutY-L lineage (P = 1.5 × 10−7). This sec-
ondary signature is characteristic of mutY defects (29). Thus, after
the rise of amutT hypermutator genotype, two distinctmutY alleles
with reduced mutation rates independently evolved and invaded
this E. coli population, driving themutT-only lineage extinct (or at
least to very low frequency).

History of the Population and Mutation Rate Dynamics.We then used
only the synonymous mutations to reconstruct more precisely the
history and mutation-rate dynamics in this population (Fig. S1). If
one assumes that synonymous mutations are selectively neutral,
then the expected number of such mutations in an evolved clone
relative to its progenitor is equal to the product of the intrinsic
substitution rate, the number of genomic sites at risk for synony-
mous mutations, and the number of elapsed generations (30, 31).
Because we sequenced multiple genomes of clones with each

A

B C

Fig. 1. Mutation rate dynamics in an experimental pop-
ulation of E. coli. (A) Phylogenomic tree reconstructed from
point mutations in individual clones (designated by letters A
to D) isolated at the indicated time points (e.g., 20,000 gen-
erations shown as 20K) and rooted at the ancestor. Branches
are colored by the presence of ancestral (wild type) or evolved
alleles in the mutT and mutY genes and scaled by the number
of substitutions. Note the change in scale (bars of length 2
and 50) when the mutT genotype arose after 20,000 gen-
erations. (B) Trajectory of mean fitness measured in compe-
tition against the ancestral strain is shown in green; the
trajectory was fit using log-transformed values of fitness and
time (Materials and Methods). Other colored symbols show
the total number of point mutations relative to the ancestor
in sequenced genomes, with line segments indicating rates of
mutation accumulation in each background. Dashed lines in-
dicate apparent extinctions of the ancestral and mutT-only
types at unknown times. (C) Rates of mutations conferring
rifampicin resistance (RifR) in clones estimated from fluctuation tests. Mutation rates were highest in mutT genotypes and decreased in later clones with
secondary mutY mutations. Error bars show 95% confidence intervals.
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mutator type isolated at different generations, we could use a max-
imum likelihood approach to estimate simultaneously the mutation
rates in each genetic background, the times when each mutation
that modified the mutation rate arose, and the times when the
various branches diverged in the phylogeny (Tables S2 and S3). This
analysis indicates an increase of ∼150-fold in the mutation rate in
themutT background relative to the ancestor (Fig. 2A), followed by
secondary reductions of ∼56% and ∼36% in themutT mutY-E and
mutT mutY-L backgrounds, respectively (Fig. 2B and Table 2).
The mutation rates estimated from this analysis agree reason-

ably well with those based on the fluctuation tests (Fig. 1C). In
general, we expect the rates inferred from the phylogenomic data
to be more accurate because they encompass the entire genome
across many thousands of generations. In contrast, the fluctuation

tests focus on a single gene, and the spectrum of possible muta-
tions that confer rifampicin resistance and how they interact with
the mutational biases specific to each lineage are unknown. Also,
the fluctuation tests were performed on individual clones, which
could have acquired other rate-modifying mutations whose
effects might not yet be evident in the mutation rates or spectra
inferred from the phylogenomic analysis. For example, based on
the fluctuation tests, clone 40K-C seems to have a lower muta-
tion rate than clones 35K-C and 40K-B (Fig. 1C), even though all
three clones lie on the mutY-L branch (Fig. 1A).

Inferring the Fitness Effects of the Antimutator Alleles. Parallel
evolution is a hallmark of adaptation, and so it is reasonable to
infer that the two independent mutations in mutY achieved their
high frequencies because they conferred an advantage. However, it
is also possible that these mutY mutations were not adaptive, es-
pecially given the facts that (i) the mutT lineage had a greatly el-
evated mutation rate, (ii) the increased mutations caused by mutT
hypermutators are A:T→C:G transversions, and (iii) both of the
mutations in mutY were A:T→C:G transversions. We therefore
sought to quantify the probability that the mutations inmutY could
have arisen by chance alone, given the relevant parameters. There
are 426 possible A:T→C:G substitutions in themutY reading frame
that would produce either nonsynonymous or nonsense mutations,
and we made the conservative assumption that all of them would
have led to a loss of function. Then, we used the mutT mutation
rate and branching times inferred for the phylogenetic tree (Fig. 2C
and Table 2) to estimate the probability of one of these mutations
occurring on each relevant branch (i.e., after themutT-only lineage
split at ∼25,633 generations into the two lineages that in-
dependently acquired mutYmutations) as soon as, or sooner than,
the mutations occurred. These probabilities are 1.3% and 5.7% for
the mutY-E and mutY-L clades, respectively. The joint probability
of these two events is <0.1%, and we therefore reject this non-
adaptive explanation for the parallel evolution of reducedmutation
rates. Of course, this calculation is specific to themutY gene and the
circumstances of this population (including branch lengths and
mutation rate), and different calculations would be required to
calculate the probability of parallel evolution by chance alone for
unspecified sets of genes or under other circumstances (32, 33).
Using population–genetic theory, we can estimate the genetic

load associated with an elevated mutation rate. Assuming that
most nonsynonymous mutations are either neutral or deleteri-
ous, whereas most synonymous mutations are neutral, the frac-
tion of nonsynonymous changes that are deleterious can be
estimated from the ratio of the rates of nonsynonymous (dN) to
synonymous (dS) substitutions. We observed a dN/dS ratio of
∼0.80 for all mutators, implying that ∼20% of all nonsynonymous
mutations were deleterious. Confounding factors that can, in
principle, alter the observed dN/dS ratio for other reasons in-
clude codon bias and selection, GC mutational skew, selection
for higher GC content, and bottleneck effects. However, these
factors had negligible effects in our study and left no signatures
in the evolved genomes (SI Text). Given the estimated mutation

Table 1. Numbers and mutational spectra of base substitutions according to genetic
background

Substitution Ancestor mutT mutT mutY-E mutT mutY-L

A:T→T:A 5 (1, 4, 0) 0 0 0
A:T→C:G 8 (1, 5, 2) 412 (48, 307, 57) 233 (32, 159, 42) 292 (41, 205, 46)
A:T→G:C 6 (0, 2, 4) 0 1 (0, 1, 0) 1 (0, 1, 0)
C:G→T:A 15 (0, 13, 2) 0 2 (1, 1, 0) 2 (1, 1, 0)
C:G→G:C 2 (0, 2, 0) 0 0 0
C:G→A:T 5 (0, 3, 2) 2 (0, 2, 0) 38 (13, 18, 7) 24 (6, 15, 3)
Total 41 (2, 29, 10) 414 (48, 309, 57) 274 (46, 179, 49) 319 (48, 222, 49)

Point mutations along all branches in the phylogenetic tree for each background (i.e., branches of the same
color in Fig. 1A). Numbers in parentheses show the separate counts for synonymous, nonsynonymous, and
noncoding mutations, respectively.
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Fig. 2. Maximum likelihood model of mutation rate dynamics fit to syn-
onymous mutations. (A) Point mutation rate estimates, expressed on a ge-
nome-wide basis. The ancestral rate was derived from a previous analysis of
nonmutator clones from eight experimental populations (31). Error bars are
95% confidence intervals. (B) Relative mutation rates for two mutY com-
pensatory mutations inferred from the maximum likelihood model and
expressed relative to the mutT-only rate. Box plots show the probability
distribution of this parameter, where the box shows the upper and lower
quartiles, the black line the median, and the whiskers the 95% confidence
interval. (C) Timing of changes in mutation rates and phylogenetic branch
points. Each box plot shows the probability distribution, in time, for a branch
point or change in mutation rate (with quartiles, median, and confidence
limits as above). The phylogeny is overlaid on the box plots.
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rates, the calculated genetic load in the mutT background was
0.013 per generation, and this load was reduced to 0.0073 and
0.0093 with the addition of the mutY-E and mutY-L mutations,
respectively (Table 2). These genetic load reductions imply
positive selection coefficients of ∼0.57% and ∼0.37% formutY-E
and mutY-L, respectively. Selection can readily act on mutations
with effects of this magnitude in the large population studied
here (22, 26). Indeed, as the rate of fitness improvement de-
celerated late in the experiment (Fig. 1B), the fitness benefits of
these reductions in genetic load were presumably among the
highest that remained available to the evolving population, as
evidenced by the simultaneous rise of the two mutY alleles.
We did not attempt to measure these selection coefficients

directly for several reasons. First, it is difficult to measure very
small selection coefficients, such as those estimated above. Sec-
ond, it is challenging to produce the necessary isogenic strains in
hypermutable backgrounds, owing to secondary mutations that
would likely arise during strain construction. Third, the relevant
selection coefficients here involve reductions in genetic load,
which would require that competing populations achieve the
equilibrium between the production of deleterious mutations and
their removal by natural selection; but during that time interval,
other beneficial mutations may arise that would confound meas-
urements of the selection on the genetic load. It is conceivable
that the mutY alleles, besides reducing the genetic load, might
confer some additional, hypothetical benefit that accelerated their
spread. However, the known function and mechanism of action of
the MutY protein do not suggest an obvious advantage (34). In
any case, a reduction in genetic load is expected for any mutations
that compensate for hypermutators, whereas hypothetical effects
of compensatory mutations on other aspects of fitness would de-
pend on the particular genotype and environment.

Synthesis and Perspective. Our results indicate that the tension be-
tween accelerating adaptive evolution and reducing genetic load
depends on the fit between a population and its environment, with
the relative importance of load reduction increasing as a population
becomes well adapted to its circumstances. Many studies have
documented the evolution of higher mutation rates as microbial
populations adapt to changed environments (6, 8–12, 35). However,
despite long-standing theoretical interest (23–25), the complemen-
tary prediction—that populations should evolve lower rates once
they are adapted to their environments—has received only limited
and indirect support (7, 20, 35–38). Some of the limitations of
earlier studies include reliance on comparative data (36), lack of
information on the genetic basis for mutation rate changes (37,
38), lack of quantification of effects on rates of sequence evolu-
tion (20, 37, 38), and the use of strains not well adapted to their
environment (7, 37, 38). Moreover, reductions in mutation rates
were observed surprisingly early in some studies (7, 37), and even
in nonmutator backgrounds (38), and hence, these results could

be seen as counterexamples to the prediction that increased
mutation rates should evolve during adaptation to changed con-
ditions, rather than as support for the hypothesis that rates decline
when populations become well adapted to their environments.
In our view, the paucity of evidence for mutation rate reductions

in evolving asexual populations lies not in flaws with the theory, but
rather in the necessity for evolution to proceed in a test environ-
ment for a sufficiently long time that the scope for further adap-
tation is reduced to a level commensurate with the load of
deleterious mutations. We realize that our experiment, which has
run for over 20 years, represents a significant time commitment, but
it is also a mere “blink of the eye” with respect to evolution.

Materials and Methods
Long-Term Evolution Experiment and Genome Sampling. The focal population
in this study is designatedAra–1. It is oneof 12 E. coli B populations started from
a common ancestor and propagated during a long-term evolution experiment
(26). We sampled 16 evolved clones (Table S1), two each at generations 2,000
(2K-B and -C), 5,000 (5K-B and -C), 10,000 (10K-B and -C), 15,000 (15K-B and -C),
20,000 (20K-B and -C), 30,000 (30K-A and -B), and 40,000 (40K-B and -C) and one
each at generations 27,000 (27K-D) and 35,000 (35K-C). We sequenced their
genomes on the Illumina Genome Analyzer platform at the Centre National de
Séquençage, Genoscope, with one lane of single-end 36-bp reads per genome.
We also analyzed six previously sequenced genomes (27) fromclones isolated at
generations 2,000 (2K-A), 5,000 (5K-A), 10,000 (10K-A), 15,000 (15K-A), 20,000
(20K-A), and 40,000 (40K-A). Point mutations were identified by comparing
sequence reads to the genome of the ancestral strain REL606 (39), using BRESEQ,
a pipeline for analyzing resequenced microbial genomes (27, 31, 40).

Fluctuation Tests. Fluctuation tests were performed in four blocks, andmutation
rates and their respective confidence intervals were estimated by applying the
Ma–Sandri–SarkarMaximumLikelihood EstimationMethod (41) as implemented
in the Fluctuation Analysis Calculator (42). The first block included the ancestral
strain only with 60 replicate cultures grown in DM500 (Davis Minimal me-
dium supplemented with 500 μg/mL glucose); 48 cultures were plated on
LB+Rifampicin(Rif) agar for mutant selection, and 12 were diluted and plated
on LB agar to determine total cell counts. The second block included five
evolved strains (30K-A and -B, 40K-A, -B, and -C) with 60 cultures of each grown
in DM50 (DM with 50 μg/mL glucose); 48 cultures were plated on LB+Rif agar,
and 12 were diluted and plated on LB agar. Most values shown in Fig. 1C are
from this block. The third block included three evolved clones (27K-D, 30K-B,
and 40K-B), as did the fourth block (30K-B, 35K-C, and 40K-B), with 66 replicate
cultures of each strain grown in DM50; 54 cultures were plated on LB+Rif agar,
and 12 were diluted and plated on LB agar. The values shown in Fig. 1C for the
27K-D and 35K-C clones are from these blocks, which were performed to con-
firm that their mutation rates were similar to other clones with the same
mutator background; strains 30K-B and 40K-B were included as controls to
facilitate comparisons with the other blocks. The estimated mutation rates
were 3.7 × 10−7 (block 3) and 3.7 × 10−7 (block 4) for 30K-B, and 0.9 × 10−7

(block 3) and 1.1 × 10−7 (block 4) for 40K-B; neither difference was significant
at the 0.05 level. The rate estimated for the 27K-D clone bearing the mutT
allele differed significantly from the initially tested mutT clone 30K-B (P <
0.001), but the difference was only 1.3-fold and thus small compared with the
difference between thesemutT clones and themutTmutY-L clone 40K-B (4.8-
and 6.0-fold, respectively; each P < 0.001). Also, the mutation rate estimated
for the 35K-C clone bearing themutT mutY-L alleles was 1.1-fold higher than
the rate for the 40K-B mutT mutY-L clone, a difference that was not signifi-
cant (P = 0.30), whereas the rates for both of these mutT mutY-L clones dif-
fered significantly from the mutT-only 30K-B clone (by 3.4- and 3.2-fold,
respectively; each P < 0.001). Thus, different clones with the same mutator
genotype had similar or equal mutation rates.

Fitness Assays.We estimated the mean fitness of population samples relative
to the ancestor by performing competitions under the same conditions used
during the evolution experiment, as described elsewhere (26). From these
data, we calculated the net growth rates of each competitor, and we com-
puted relative fitness as the ratio of the growth rate of the evolved pop-
ulation to that of the ancestor. The competitors were distinguished by using
an arabinose-utilization marker that is neutral in these conditions. This
procedure was performed with 20-fold replication for the ancestral clone
and with 10-fold replication for evolved samples. Using the R package (43),
a best-fit trajectory was obtained for the following model:

ln W ¼ a lnðbt þ 1Þ;

Table 2. Genomic mutation rates, times of origin for mutator
lineages, and genetic loads

Background μg To Ld

mutT 0.061
(0.049–0.088)

21,612
(20,136-23,846)

0.013
(0.011–0.019)

mutT mutY-E 0.027
(0.023–0.032)

26,769
(25,352-28,014)

0.0073
(0.0061–0.0085)

mutT mutY-L 0.039
(0.030–0.048)

30,821
(27,558-32,801)

0.0093
(0.0073–0.012)

Genome-wide point mutation rates, μg (generation−1), for each mutator
background were inferred from a five-rate model (Table S2) and used to
calculate the times of origin, To (generations), for the mutators (Fig. 1A) and
their genetic loads, Ld (generation−1). All estimates are medians, with 95%
confidence intervals shown in parentheses. The ancestor’s mutation rate was
previously estimated as 0.00041 per generation based on the accumulation
of synonymous substitutions in eight nonmutator lineages (31).
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where W is mean fitness, a and b are model parameters, and t is time in
generations. From these data, we estimated a = 0.101815 and b = 0.004284
per generation, with a correlation of 0.9898 between the predicted value
and the mean of the measurements at the corresponding generation.

Phylogenetic Tree Reconstruction. Our dataset was unusual because it in-
cluded ancestral and derived genomes with known temporal relationships.
Mutations were treated as discrete characters, and the phylogeny (Fig. 1A)
was inferred by using maximum parsimony in Molecular Evolutionary Ge-
netics Analysis version 4.0 (44). We represented the first half of the resulting
tree relative to the line of descent leading from the ancestor to the late-
generation clones (Fig. 1A). The rise of the mutT mutator dramatically
changed the branch lengths after 20,000 generations, and so we adjusted
the scale of genetic distances to the nonmutator and mutator backgrounds
(Fig. 1A). For each evolved clone, we calculated its distance relative to the
ancestor as the number of all point-mutation differences, and trend lines
were fit separately for each background (Fig. 1B).

Estimating Genomic Mutation Rates and Times of Origin of Mutator Alleles. We
estimated the total genomic point-mutation rate per generation, μ, along
three specific branches of the phylogenetic tree by using the genome
sequences of pairs of evolved clones with each of the three mutator geno-
types that were isolated from the population at different generations. We
used the following equations:

μðT1 � tÞ ¼ n1;  μðT2 � tÞ ¼ n2 

and therefore

μ ¼ ðn1 � n2Þ=ðT1 � T2Þ;

where T1 and T2 are the ages, in generations, of the two clones; t is the age
of their most recent common ancestor; and n1 and n2 are the number of
synonymous mutations specific to each clone. We applied this approach
using only the A:T→C:G and C:G→A:T base substitutions because they were
the classes of mutations clearly (and typically) affected by the mutT and
mutY alleles (Table 1). From these data, we estimated the genomic point-
mutation rates for the three evolvedmutT mutY genetic backgrounds (Table
2). The results of this analysis would not be substantively affected by using
all of the point mutations instead of only the two classes considered here.
For the mutator backgrounds, there are a total of 142 synonymous muta-
tions, and only two belong to the other four mutation classes combined
(Table 1). With the penalty for additional parameters required to fit an
extended model with one or more additional rates, the extended model
would be no better than the model with only the two classes of mutation.

Using a Poisson framework, we can derive from that model a maximum
likelihood estimate of the time of origin of the mutT allele. To do so, we
added to the previous model a branch with n0 mutations leading to the
emergence of mutT at time x. The following equations were derived:

Likelihoodðx; t; μÞ ¼ Pðn0; μðt − xÞÞ Pðn1; μðT1 − tÞÞ Pðn2; μðT2 − tÞÞ;

with P being the Poisson expectation, and:

LogLikelihoodðx; t; μÞ ¼ �ðT1 þ T2 − t − xÞμþ ðn0 þ n1 þ n2ÞlogðμÞ
þn1 logðT1 − tÞ þ n2 logðT2 − tÞ
þn0 logðt − xÞ þ Constant

:

This estimate can be easily optimized for all criteria. The maximum likelihood
solution provides a mutation rate per generation, μ, similar to the previous
estimate and indicates that the evolvedmutT allele arose around generation
21,612 (Table 2).

However, this approach does not make full use of our data, nor does it
allow estimation of the transition times to the mutY alleles. Therefore, we
also used a Metropolis Hastings Monte Carlo Markov chain approach as
follows. The topology of the phylogeny was estimated using the genome
sequences as before, but the branch lengths and mutation rates were esti-
mated by using the actual ages of the evolved clones sampled at 27K, 30K,
35K, and 40K generations. By using the numbers and types of synonymous
mutations along all branches, we could estimate the likelihood of a partic-
ular combination of inner node ages, mutation rates, and transitions in
mutation rates with a Poisson model. Three transition times were estimated
including from the nonmutator to mutT, from mutT to mutT mutY-E, and
from mutT tomutT mutY-L. We imposed a lower bound for the origin of the
mutT allele at 20,000 generations based on the line of descent (Fig. 1A).

Depending on the model, we estimated two, three, or five mutation rates
including the impact of the three mutator backgrounds on A:T→C:G and
C:G→A:T mutations (Table S2). All other rates were set to zero because the
mutations were observed rarely, if ever, on these backgrounds. Under the
two-rate model, all three mutator backgrounds had the same A:T→C:G muta-
tion rate and the twomutY alleles increased the C:G→A:T mutation rate from
zero to the same new rate. In the three-rate model, the twomutY alleles were
identical to one another but also differed from the mutT-only background in
their A:T→C:Gmutation rate. Finally, under the five-rate model, the twomutY
alleles differed from one another in their A:T→C:G and C:G→A:T mutation
rates. Along the Markov chain, a random set of up to 10 parameters was
modified simultaneously with a Gaussian shift. Depending on the likelihood of
the data with one set of parameters, a new set was either accepted (replacing
the former one) or rejected using Metropolis Hastings criteria. The variance of
the Gaussian distribution modifying the parameters was set such that the ac-
ceptance rate was ∼23%. After a burn-in period of 5 × 106 sampling steps, the
state of theMarkov chain was recorded every 2,000th step for another 5 × 106

samples. The distribution of these states was used to infer the distribution of
the model parameters. Several initial conditions were used and convergence
was achieved. Using the GC content of the genome and the number of syn-
onymous sites for each type of mutation, we converted the substitution rates
and types of mutation into genomic mutation rates for each genetic back-
ground (Table 2). Importantly, a comparison of the two- and three-ratemodels
strongly supports different genomic rates for the mutT-only and the mutT
mutY backgrounds (Table S2). The five-rate model suggests a difference be-
tween themutT mutY-E andmutT mutY-L backgrounds (Fig. S2) but it did not
provide a better fit than the three-rate model after imposing the penalty for
additional parameters (Table S2). The fluctuation tests also showed different
mutation rates for the mutT mutY-E and mutT mutY-L backgrounds (Fig. 1C),
although that difference was in the opposite direction to the difference
inferred from the phylogenomic analysis (Fig. S2).

To gain further insight into the possible differences between the mutT
mutY-E and mutT mutY-L backgrounds, we applied the same two-, three-,
and five-mutation-rate models to the set of all point mutations, including
nonsynonymous and noncoding ones. On the one hand, we expect selection
to have a much stronger impact on nonsynonymous and noncoding muta-
tions than on synonymous mutations, and therefore pooling them to esti-
mate mutation rates is problematic. On the other hand, we gain substantial
statistical power by using all mutations because synonymous substitutions
were only a small fraction of all point mutations (Table 1). When using all
point mutations, the five-rate model gave a statistically better fit to the data
than the best three-rate model, even with the penalty for additional
parameters (Table S3). We therefore chose to use the five-rate model over
the three-rate model, but we used the rates based on synonymous changes
only to minimize the effect of selection on the estimation of mutation rates.

Estimating Genetic Load and Strength of Selection to Reduce Mutation Rates.
To estimate the fitness cost arising from deleterious mutations in the mutT
background, we first calculated the number of nonsynonymous sites that
experienced negative selection. If mutations at synonymous sites are neutral
and mutations at nonsynonymous sites are either neutral or deleterious, then
the fraction fd of nonsynonymous sites where mutations are deleterious can
be estimated from the ratio of synonymous to nonsynonymous mutations that
accumulate along a branch relative to the numbers of sites at risk for those
mutations. Let s and n be the numbers of synonymous and nonsynonymous
mutations, respectively, observed along a branch of length T generations, and
let S and N be the corresponding numbers of synonymous and non-
synonymous sites. Given the mutation rate μ per site per generation, then:

s ¼ S  μ  T and n ¼ ð1− fdÞ N  μ  T :

By substituting s/S for μT and rearranging terms, we obtain:

fd ¼ 1� ðn=NÞ=ðs=SÞ ¼ 1� Ka=Ks;

where Ka and Ks are the per-site rates for the accumulation of non-
synonymous and synonymous mutations, respectively. The genome-wide
load Ld caused by deleterious point mutations is then calculated as:

Ld ¼ fd N μ ¼ fd NðKs=TÞ;

where the mutation rate is estimated by the per-generation rate of accu-
mulation of synonymous mutations. This load corresponds to the fraction of
individuals lost each generation because they have acquired a deleterious
mutation. This calculation may lead to a slight underestimate of the load if
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some deleterious mutations, not yet eliminated by selection, are included
among the observed nonsynonymous mutations (n). Similarly, the load will be
underestimated to the extent that some of the observed nonsynonymous
mutations are beneficial. However, the number of beneficial mutations should
be small because we are estimating the load only during the later generations
of the long-term evolution experiment, after the rate of fitness improvement
had greatly decelerated (Fig. 1B), indicating that beneficial mutations were
fewer and of smaller effect than in the early generations of the experiment. In
particular, we considered themutations that had accumulated only in themutT
mutY backgrounds (using clones 30K-A, 35K-C, 40K-A, 40K-B, and 40K-C). These
mutators produced a strongly biased spectrum ofmutations, and therefore, we
calculated Ka and Ks for the two types of mutation with sufficient numbers of
synonymous changes (A:T→C:G andC:G→A:T). However, selection acting on the
mutations should be independent of the mechanisms that produced them.
Thus, we could infer selection against deleterious mutations using the mutT
mutY clones and apply that information to the mutT background, while cor-
recting for their different mutation rates and spectra. Taking into account the
sum of branches for all mutT mutY clones, we found:

fdA:T→C:G ¼ 0:22 and fdC:G→A:T ¼ 0:46:

Using our previous estimates of the mutation rates for each background, we
can then estimate the genetic load (Table 2) as follows:

Ld ¼ fdA:T→C:GNA:T→C:GμA:T→C:G þ fdC:G→A:TNC:G→A:TμC:G→A:T:
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