Diradical intermediate within the context of tryptophan tryptophylquinone biosynthesis

Erik T. Yukla, Fange Liu, J. Krzystek, Sooim Shin, Lyndal M. R. Jensen, Victor L. Davidson, Carrie M. Wilmot, and Aimin Liu

Edited by JoAnne Stubbe, Massachusetts Institute of Technology, Cambridge, MA, and approved February 1, 2013 (received for review August 30, 2012)

Despite the importance of tryptophan (Trp) radicals in biology, very few radicals have been trapped and characterized in a physiologically meaningful context. Here we demonstrate that the diheme enzyme MauG uses Trp radical chemistry to catalyze formation of a Trp-derived tryptophylquinone cofactor on its substrate protein, premethyamine dehydrogenase. The unusual six-electron oxidation that results in tryptophan tryptophylquinone formation occurs in three discrete two-electron catalytic steps. Here the exact order of these oxidation steps in the processive six-electron biosynthetic reaction is determined, and reaction intermediates are structurally characterized. The intermediates observed in crystal structures are also verified in solution using mass spectrometry. Furthermore, an unprecedented Trp-derived diradical species on premethyamine dehydrogenase, which is an intermediate in the first two-electron step, is characterized using high-frequency and -field electron paramagnetic resonance spectroscopy and UV-visible absorbance spectroscopy. This work defines a unique mechanism for radical-mediated catalysis of a protein substrate, and has broad implications in the areas of applied biocatalysis and understanding of oxidative protein modification during oxidative stress.

Results

It was previously shown that addition of excess H$_2$O$_2$ to crystals of the MauG–preMADH complex resulted in formation of TTO in crystalllo (10). X-ray crystallography cannot resolve quinol to quinone oxidation, but can distinguish cross-link formation from oxygen insertion. To determine the order of these events in MADH maturation, the residual peroxide contaminants within commercial PEG were exploited. PEG solutions slowly accumulate organic peroxides through autoxidation of the polyoxyethylene bonds, and can release hydrogen peroxide as part of this process (12). The MauG–preMADH crystals were grown using 22–26% (wt/vol) PEG 8000 as precipitant, and thus as the crystals aged within the crystallization trays they were exposed to slow release of H$_2$O$_2$. As a result, catalytic turnover in MauG–preMADH crystals was observed over time. X-ray diffraction data from crystals harvested after 10, 20, 30, 40, 50, and 130 d clearly show a progression of changes at the preTTO site that is consistent with the cross-link forming first, followed by addition of the second oxygen to βTrp57-OH (Fig. 2D; Table S1 and S2). Electron density changes indicate cross-link formation between βTrp57-OH and βTrp108 is complete after ~40 d, and requires βTrp57-OH to undergo a rotation of ~20° (Fig. 2B). Significant positive–difference electron density appears for the second O atom of TTO only after cross-linking has occurred.

To ensure these events were indeed MauG-dependent reactions and not simply due to direct reaction with H$_2$O$_2$, a crystal of

The authors declare no conflict of interest.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1215011110/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1215011110

PNAS | March 19, 2013 | vol. 110 | no. 12 | 4569–4573
the complex between inactive W199F MauG and preMADH was aged. The W199F MauG mutant can form the bis-Fe(IV) state on reaction with H2O2, but cannot catalyze TTQ biosynthesis, as hole hopping through Trp199 is required for preTTQ oxidation (Fig. S1A) (13, 14). In contrast to the native MauG–preMADH crystals, the W199F MauG–preMADH crystals showed no changes at the preTTQ site after 60 d (Fig. S1B; Table S3). Therefore, the sequential reactions of preMADH observed in the crystals are MauG dependent.

To demonstrate that the in crystallo results reflect the order of the reaction in solution, whole-protein mass spectrometry of MauG, preMADH, and H2O2 in a 2:1:2 stoichiometry was compared with a control sample without H2O2; this equates to one MauG:one preTTQ:one H2O2, because preMADH contains two active sites. Reverse-phase chromatography on a C4 column allows for the separation of the β-subunit of MADH from both MauG and α-MADH before mass spectrometry (Fig. S2).

Comparison of the chromatogram of the MauG–preMADH sample to the H2O2 treated sample shows the appearance of a new peak eluting earlier than β-preMADH (Fig. S2A). Mass spectrometry demonstrated the presence of two distinct species within this peak (Fig. S2B). The majority species is consistent with the mass of TTQ-containing β-MADH (15,009.73 ± 0.20 Da), and the assignment is confirmed by this chromatographic fraction having an absorbance maximum at 440 nm (Fig. S2D) (15). The other species present is 2-Da lighter (14,995.60 ± 0.05 Da) than β-preMADH in the control (14,997.54 ± 0.02 Da) and H2O2-treated samples (14,997.32 ± 0.26 Da; Fig. S2B), which is consistent with a β-MADH species containing the cross-link between βTrp57-OH and βTrp108 in the absence of the second oxygen atom. None of the chromatographic peaks from the H2O2-treated sample contained a species with a mass consistent with either quinol or quinone, but no cross-link (Table S4); this confirms that cross-link formation occurs first, followed by insertion of a second hydroxyl group into βTrp57-OH, and finally oxidation to the quinone.

Previous work demonstrated that when bis-Fe(IV) MauG was treated with stoichiometric preMADH, a protein-based radical was observed by electron paramagnetic resonance spectroscopy (9). To characterize this radical species in the context of TTQ formation, X-band EPR and HFEPR were used. After mixing MauG, preMADH and H2O2 in a 1:1:1 ratio, regardless of the order of addition, the diferric EPR signal of MauG returns, and a radical intermediate is detectable with a spin quantitation of 1.4–1.6 equivalents by X-band EPR, suggesting that two electrons were transferred to the bis-Fe(IV) site resulting in formation of two protein-based radicals. Trp and monohydroxylated Trp radicals, as well as other aromatic radicals such as Tyr, are indistinguishable by conventional X-band EPR spectroscopy (frequency ∼9 GHz). Therefore, HFEPR at 108–416 GHz and correspondingly high fields (up to 15 T) was used to determine the nature of the radical intermediate.
species 1 is consistent with the anticipated spectral features of the radicals.

A single radical species cannot account for all of the resonances of the HFPEPR data (Fig. S4). One radical species (species 1) exhibits principal g values of \(g_x = 2.00216, g_y = 2.00398, g_z = 2.00581 \), and \(\Delta g = 0.00365 \); the other (species 2) has principal g tensors of \(g_x = 2.00216, g_y = 2.00402, g_z = 2.00486 \), and \(\Delta g = 0.00270 \). A similar mismatched ratio has been previously observed in the \(\text{his-Fe(IV)} \) intermediate of MauG, likely for the same reason (9). It is also possible that the radicals may have different power saturation properties, which cannot be tested due to technical limitations of the HFPEPR technique.

Evidence for the Trp-based diradical species was also obtained by monitoring solution single-turnover and steady-state kinetic reactions of MauG and preMADH by UV-visible absorption spectroscopy. When MauG plus preMADH were mixed with stoichiometric \(\text{H}_2\text{O}_2 \) for 30 s, the formation of absorption features at 560 and 310 nm characteristic of Trp-based cation radicals in solution (32) and in protein (33) were observed (Fig. 3B). Subsequent addition of hydroxyurea, a radical scavenger, quenched these features, confirming that they represent radical species. The shoulder at 330 nm, which was not sensitive to hydroxyurea, is likely a small amount of quinol MADH (15). The reaction was also studied with excess \(\text{H}_2\text{O}_2 \) present to generate steady-state conditions (Fig. 3C). Conditions were such that after 36 s the reaction was still in the pre–steady-state phase. At this time, the 560- and 310-nm absorption features were again observed, and subsequent addition of hydroxyurea quenched these features. Appearance of an absorption feature at 440 nm following hydroxyurea treatment is likely a small amount of quinone MADH that formed during the ~10-s interval between recording the initial difference spectrum and addition of the radical scavenger. These data illustrate formation of the di-Trp radical in solution on a time scale that parallels the mixing/freezing time to prepare the EPR samples. The pre–steady-state Trp-based cation radical spectral features disappear with the appearance of the 440-nm absorbance that indicates TTQ formation, and confirms the relevance of the intermediate to the catalytic cycle.

Discussion

The radical intermediate associated with the first two-electron oxidation of preMADH was characterized by HFPEPR, which identified two distinct radical species; one of these is consistent with a preMADH \(\beta \text{Trp}57\text{-OH} \) radical, whereas the other appears to be a Trp radical. The characterization of this radical intermediate, and the order of the reaction in \textit{crystallo}, allows a working chemical reaction mechanism to be proposed for the six-electron oxidation of preMADH leading to the formation of TTQ and mature MADH.

![Fig. 4. Proposed chemical reaction mechanism for the six-electron oxidation of preMADH leading to the formation of TTQ and mature MADH.](image-url)
TTQ biosynthesis (Fig. 4). In this mechanism, the first two oxidizing equivalents from the bis-Fe(IV) intermediate oxidize preMADH to produce an unprecedented Trp-based diradical (1), which subsequently loses two protons and combines to form a cross-link (2). The second cycle of oxidation by a regenerated bis-Fe(IV) MauG incurs an attack by a water molecule, leading to oxygen insertion, as defined by X-ray crystallography, to form the quinol MADH (3). The final bis-Fe(IV) MauG catalyzes oxidation of reduced quinol TTQ to the oxidized and catalytically active radical, analogous to the situation described for the R2 protein of for Trp-based protein radicals (20). It should be noted that the mechanism of deprotonation remains to be elucidated, it is known to be a spontaneous process concurrent. Although the precise mechanism of deprotonation differs from that on a neutral radical (34), which may also affect the magnetic coupling between them.

Generally, for the cross-linking reaction between the radical states to proceed, they need to become deprotonated and couple. These processes are likely interconnected and essentially concurrent. Although the precise mechanism of deprotonation remains to be elucidated, it is known to be a spontaneous process for Trp-based protein radicals (20). It should be noted that the Fe ion in MauG would not affect the coupling within the diradical, analogous to the situation described for the R2 protein of *Escherichia coli* ribonucleotide reductase (33). The nearest heme Fe in MauG is 19 Å away from βTrp108 and εTrp57-OH, which is much longer than the Trp radical and di-iron center separation in R2. A hydrogen bond connection postulated to play a role in R2 is also absent in the MauG–preMADH complex. Rather, the electron transfer from preMADH to MauG has been shown to occur through hole-hopping (13, 14).

The present study begins to unravel the remarkable chemistry that occurs during this bioisotopic reaction. The occurrence and stability of the di-Trp radical intermediate is unprecedented. The longevity may be a consequence of the required oxidation of the Trp radical (20) to react with Trp108 (Fig. 2B), or a rate-limiting proton loss that precedes radical coupling. The nature of the proton acceptors is as yet unknown. The role of the protein environment surrounding the two Trp residues in preMADH clearly plays an important role in facilitating the reaction; this may be considered an unusual form of substrate-assisted catalysis coupled with long-range electron transfer to the MauG high-valent hemes.

Methods

Protein Expression and Purification. Recombinant MauG (25) was purified from *P. denitrificans* as described previously. PreMADH (7) was expressed in *Rhadobacter sphaeroides* and purified as described previously (36).

UV-Visible Absorbance Spectroscopy. The single-turnover reactions contained 10 μM preMADH, 1.0 μM MauG, and 10 μM H2O2. Hydroxyurea was then added at a concentration of 2.0 mM. The pre-steady-state reaction contained 30 μM preMADH, 3.0 μM MauG, and 1.0 mM H2O2. Hydroxyurea was added to 3.0 mM.

EPR Spectroscopy. The HFEPR sample was prepared in 10 mM potassium phosphate buffer (pH 7.5) containing 5–10% (vol/vol) glycerol by first adding MauG (135 μL, 1.43 mM) to preMADH (170 μL, 1.17 mM). Then, H2O2 (final concentration = 1.22 mM) was added and the mixture frozen. HFEPR spectra were recorded at the EMR Facility at the National High Magnetic Field Laboratory in Tallahassee, FL (37). HFEPR simulations were performed using DOUBLET. The samples for continuous-wave X-band EPR quantitative analyses had final protein concentrations of 150 μM for both MauG and preMADH with addition of 1 equivalent of H2O2. The X-band EPR spectra were recorded on a Bruker ER200D spectrometer at 100-kHz modulation frequency using a 4116DM resonator.

Mass Spectrometry. Reaction mixtures contained 25–55 μL of 20 μM preMADH, 40 μM MauG, and 0–120 μM H2O2. Samples were incubated for 1 h before injection onto a C4 column (Phenomenex) connected to a HPLC system (Waters). Fractions were collected, dried, and reconstituted in 50% acetonitrile, 0.1% formic acid for mass spectrometry. Data were acquired on a QSTAR XL (AB Sciex) quadrupole TOF mass spectrometer with the on-spray electrospray source.

Crystallization, X-Ray Data Collection, and Structure Determination. The WT MauG and W199F MauG complexes with preMADH were crystallized as previously reported (10, 14). WT MauG–preMADH crystals were harvested every 10 d for 50 d, and once at 130 d following crystallization tray setup. The W199F MauG–preMADH crystal was harvested after 60 d. X-ray diffraction data were collected at the Advanced Photon Source (APS), Argonne National Laboratory, Argonne, IL. The data were processed with HKL2000 (38) (Tables S1–S3). Refinement was carried out using REFMAC (39) in the CCP4 program suite (40) starting from the model of WT MauG–preMADH (PDB ID code 3L4M). Model-building was carried out in COOT (41, 42), and calculated electron density maps were generated using PHENIX (43) (Tables S1–S3).

Acknowledgments. We thank Ed Hoefner for KSBL support; LeeAnn Higgins and Bruce Withun for CMSP support; and the staff at APS sector 23 for their support, especially Michael Becker, Steve Corcoran, Venupogalan Nagarajan, and Derek Yoder; and Dr. Andrew Ozarowski of the National High Magnetic Field Laboratory for providing the EPR simulation program used in this study. HFEPR studies were supported by the National High Magnetic Field Laboratory, which is funded by the National Science Foundation through the National MagLab at Florida State University and the National Institute of Energy and the Department of Energy. This work was supported by National Institutes of Health Grants GM-66569 (to C.M.W.), GM-41574 (to V.L.D.), GM-97779 (to E.T.Y.), NSF Grant MCB-0843537 (to A.L.), and Minnesota Partnership for Biotechnology and Medical Genomics Grant SPF-05-0013-P-FY06 (to C.M.W.). Mass spectrometry was conducted at the Center for Mass Spectrometry and Proteomics at the University of Minnesota. Computer resources were provided by the Basic Sciences Computing Laboratory of the University of Minnesota Supercomputing Institute. X-ray data were collected at the Kahlert Structural Biology Laboratory at the University of Minnesota and the National Institute of General Medical Sciences and the National Institute of Cancer Institute Structural Biology Facility-Collaborative Access Team (GMICA-CAT) at the APS, Argonne National Laboratory. GMICA-CAT has been funded in whole or in part by National Cancer Institute Grant Y1-CO-1020 and National Institute of General Medical Science Grant Y1-GM–1104. Use of the APS was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, Contract DE-AC02-05CH11231.

3. Svitrunenko DA, Wilson MT, Cooper CE (2004) Tryptophan or tyrosine? On the nature of coupling (through space or via bonds), and the fact that both radicals are indicated by absorbance data to be cationic. We know through theoretical work that the spin distribution on a cation radical (of 3-methylindole) is different from that on a neutral radical (34), which may also affect the magnetic coupling between them.

