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Those of us that had been hammering away
in the field for 40 years or more cannot
deny the excitement in learning that Brian
Kobilka, a former postdoctoral fellow of
Robert Lefkowitz, in collaboration with Roger
Sunahara, had determined the structure of
the agonist-bound β2-adrenergic receptor-Gs
protein complex (1). To borrow a phrase from
Henry Bourne, this is “the Big Enchilada” for
the G protein-coupled receptor (GPCR)/G
protein field. This work followed just five
years after Kobilka and Schertler’s determina-
tion of the crystal structure of the β2-adren-
ergic receptor (β2AR) bound to the inverse
agonist carazolol (2), and over two and a half
decades after the reports by Robert Lefko-
witz’s group of the purification, cloning, and
sequencing of the mammalian β2AR (3, 4).
These remarkable achievements and others
discussed below led to the award of the 2012
Nobel Prize in Chemistry to Kobilka and Lef-
kowitz. This was another big win for GPCRs,
G proteins, and second messengers, a field
that has already been richly rewarded, and
justifiably so, for the role they play in

hormone and neurotransmitter signaling
and pharmacology.
This story began over three decades ago

when Bob tackled the extremely difficult job
of identifying, purifying, and cloning the
β2AR, an intrinsic membrane protein present
at extremely low levels. Success evolved from
the groups’ development of radiolabled antag-
onists (after realizing the pitfalls of using the
rapidly oxidized catecholamines), the alpre-
nolol affinity column, and identification of
batches of digitonin that would preserve ac-
tivity over the 100,000-fold or so purification
required. Another key to Bob’s success was his
ability to attract a long list of talented post-
doctoral fellows (too many to list, but notably
Kobilka, Limbird, Strader, Benovic, Cerione,
Lohse, Bouvier, Dohlman, Luttrell, and his
longtime colleague Marc Caron). Once the
task of purifying the β2AR was accomplished,
it was delivered to Richard Dixon, Catherine
Strader, and Irving Sigal at Merck, who de-
termined a partial peptide sequence and were
able to find, remarkably and luckily enough,
a genomic intronless clone (3). The sequence

of the mammalian β2AR, along with that of
the turkey β2AR reported by Elliot Ross’s
group and the muscarinic acetylcholine re-
ceptor by Numa and colleague’s group (5),
revealed the stunning similarity of the overall
seven transmembrane helices topology to rho-
dopsin previously sequencedbyPaulHargrave
et al. (6). These results linked the parallel
studies of rhodopsin pioneered by Hermann
Kuhn and colleagues (7), Jeremy Nathans and
D. S. Hogness (8), Lubert Stryer, Krzysztof
Palczewski, and many others, and suggested
all GPCRs might share this homology.
Beyond the β2AR structure, the Lefkowitz

group played a major role in establishing
β2AR regulation as the paradigm for the
GPCR field. Important areas pioneered by
the group were in establishing the ternary
complex model (9), and characterization of
the desensitization of the β2AR, first dem-
onstrating its phosphorylation in response
to agonist stimulation. Interestingly, these
findings were greatly aided by use of the
S49 lymphoma somatic cell mutants, the
cyc−-lacking Gs, and the kin−-lacking PKA,
isolated by Henry Bourne’s group. These cell
lines were used to demonstrate that desensi-
tization of the β2AR proceeded through G
protein-dependent and independent path-
ways (10–12). Building on this finding led
to another landmark achievement of Bob’s
group, the purification of one of the β2AR
GPCR kinases (termed βARK or β-adren-
ergic receptor kinase originally and later
GRK2) from the kin− cell line (13). Later,
the group was able to show that arrestin
was required for desensitization of the
GRK-phosphorylated β2AR by binding to
and completely uncoupling β2AR stimula-
tion of Gs. After the discovery of the role of
the G-protein βγ subunits in augmenting re-
ceptor phosphorylation by GRKs (14, 15),
Bob Lefkowitz and John Tesmer reported
the crystal structure of GRK2 in a complex
with the G-protein βγ subunit (16). More
recently, the Lefkowitz group was first to es-
tablish the novel concept that arrestins not
only work through uncoupling and desensi-
tizing the receptor, but also work as positive
signaling proteins, scaffolding proteins such
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as MAP kinases (17), Src (18), and many
other important regulatory proteins (19).
Brian Kobilka, after leaving his postdoc-

toral fellowship with Lefkowitz, quickly estab-
lished his own reputation in the field by
achieving the first animal knockouts of the
β2AR and other adrenergic receptors, even as
he was quietly and doggedly pursuing his real
love of getting to the structure and molecular
dynamics of the β2AR. Brian admitted this to
me during a visit at Stanford some 20 years or
so back, although it was readily apparent be-
cause a good bit of our conversing was done
as Brian was running in and out of his labo-
ratory purifying a fluorescently labeled recep-
tor. It is important to understand that at the
time, Brian’s goal of getting crystals and the
structure of the β2AR was one shared by in-
numerable groups throughout the world
working on their favorite receptors. The field
had the rhodopsin crystal structure as the pro-
totype, but the crystal structure of a hormone-
or neurotransmitter-regulated GPCR was elu-
sive for the very reasons given above. Through
novel and creative approaches involving a
long, exhausting series of dead ends, Brian
obtained workable crystals that led to the first
structure of an inverse agonist-bound β2AR
with Schertler and colleagues (2). Soon after,
Kobilka and colleagues and Stevens and
colleagues reported a higher resolution struc-
ture based on using a fusion protein of
T4-lysozyme inserted into the third intra-
cellular loop (20, 21). These breakthroughs
were trumped by Brian’s determination of
the structure of the agonist-bound β2AR in
complex with Gs. This required even more
ingenious engineering, notably use of llama
antibodies (coined nanobodies) to stabilize
the activated receptor first (22) and later the

β2AR/Gs complex (1). This work established
the receptor/Gs contact sites, demonstrated
the dramatic movements of the fifth and sixth
transmembrane segments relative to the in-
active structure, and revealed an unexpected
major conformational movement of the
non-Ras helical component of Gs. Brian’s
work has been followed by a streak of GPCR
crystal structures and it is clear that these col-
lective achievements have far reaching appli-
cability to development of new drugs and our
understanding of how agonists (strong, weak,

inverse, and biased), and potentially allosteri-
cally acting ligands differentially regulate the
huge family of GPCRs. The likelihood for get-
ting structures of GPCRs with arrestin and
GRKs and determining the mechanism of bi-
ased ligands signaling looks far more promis-
ing at this juncture. As is often the case, many
individuals are needed to advance a scientific
field resulting in an award, as can be seen from
this Profile; nevertheless Bob and Brian will be
great ambassadors to represent all of this work
to the world.
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