Renal intercalated cells are rather energized by a proton than a sodium pump

Régine Chambrey a,1,2, Ingo Kurth b,1, Janos Peti-Peterdi b, Pascal Houillier a,4, Jeffrey M. Purkerson f, Françoise Levieil d,6, Moritz Hentschke e, Anselm A. Zdebikh b, George J. Schwartz f, Christian A. Hübner b,3, and Dominique Eladari d,2,3

a Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche de Santé 872, Centre de Recherche Paris Centre de Recherche des Cordeliers, Faculté de Médecine Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France; b Jena University Hospital, Institute of Human Genetics, D-07743 Jena, Germany; c Departments of Physiology and Biophysics, and Medicine, Zlikova Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033; d Département de Physiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Évry Georges Pompidou, F-75015 Paris, France; e Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale Unité 872, Faculté de Médecine Paris Descartes, Sorbonne Paris Cité, F- 75006 Paris, France; f Division of Pediatric Nephrology, University of Rochester, Rochester, NY 14642; g University Medical Center Hamburg-Eppendorf, Institute of Medical Microbiology, Virology and Hygiene, 20246 Hamburg, Germany; and h Departments of Neuroscience, Physiology and Pharmacology and Medicine, University College London, London NW3 2PF, UK

Edited by Gerhard Giebish, Yale University School of Medicine, New Haven, CT, and approved March 21, 2013 (received for review December 19, 2012)

The Na+ concentration of the intracellular milieu is very low compared with the extracellular medium. Transport of Na+ along this gradient is used to fuel secondary transport of many solutes, and thus plays a major role for most cell functions including the control of cell volume and resting membrane potential. Because of a continuous leak, Na+ has to be permanently removed from the intracellular milieu, a process that is thought to be exclusively mediated by the Na+/K+-ATPase in animal cells. Here, we show that intercalated cells of the mouse kidney are an exception to this general rule. By an approach combining two-photon imaging of isolated renal tubules, physiological studies, and genetically engineered animals, we demonstrate that inhibition of the H+ vacuolar-type ATPase (V-ATPase) caused drastic cell swelling and depolarization, and also inhibited the NaCl absorption pathway that we recently discovered in intercalated cells. In contrast, pharmacological blockade of the Na+/K+-ATPase had no effects. Basolateral NaCl exit from β-intercalated cells was independent of the Na+/K+-ATPase but critically relied on the presence of the basolateral ion transporter anion exchanger 4. We conclude that not all animal cells critically rely on the sodium pump as the unique bioenergizer, but can be replaced by the H+ V-ATPase in renal intercalated cells. This concept is likely to apply to other animal cell types characterized by plasma membrane expression of the H+ V-ATPase.

Results

H+ V-ATPase Controls Steady-State Cell Volume and Resting Membrane Potential of Renal β-ICs. The ICs of the kidney are located in a distal segment, the collecting duct, which also contains principal cells (13). ICs are specialized for H+ and HCO3− transport. They are enriched with mitochondria and have a high cytoplasmic content of carbonic anhydrase II (14). Two functionally distinct subtypes of ICs have been identified in the cortical collecting duct (CCD): the β-ICs secrete HCO3−, whereas the α-ICs secrete H+. An apical Cl−/HCO3− exchanger and a basolateral H+ V-ATPase mediate secretion of base by the β-ICs, whereas α-ICs secrete acid by an apical H+ V-ATPase and a basolateral Cl−/HCO3− exchanger. In both cell types, it is the same H+ V-ATPase that is located either in the apical membrane of the α-ICs or in the basolateral membrane of the β-ICs (15). However, there is now general agreement that the apical proton pump | plasma membrane | ion transporter

T the ionic composition of the intracellular milieu is kept different from the surrounding medium at a large cost of metabolic energy. Ion transport contributes as much as 25–45% of total cellular oxygen consumption and heat production. Indeed, the maintenance of the steady-state ionic composition expends such a large fraction of cellular metabolism that the concept of ion transport as a “pacemaker of cellular metabolism” was developed (1–3). The explanation is a continuous leak of sodium ions into the cytoplasm, which leads to incessant transport, and hence, ATP hydrolysis by the ion motive ATPases.

In animal cells the Na+/K+ P-type ATPase (P-ATPase) is thought to generate the sodium gradient that energizes the transport of a variety of solutes including sugars, amino acids, and other metabolites needed for absorption and excretion of nutrients and waste products (4). Intercalated cells (ICs), a cell type that is widely distributed in all vertebrate phyla and has a variety of names, chloride cells, mitochondria-rich cells, or ICs (5), may be an exception to this general rule. These cells are specialized for proton transport, and we show here that they do not contain any detectable Na+/K+ P-ATPase activity but transport protons to couple metabolism and ion transport. Furthermore, some of these cells are capable of NaCl absorption (6), but here the transported moieties are also coupled to proton transport.

The proton pump expressed by these cells, the H+ vacuolar-type ATPase (V-ATPase), is related to the F0F1 ATP-synthase of mitochondria (7, 8). In cells like, for example, epididymal narrow and clear cells, osteoclasts, cells of the endolymphatic epithelium in the inner ear, and renal ICs, the H+ V-ATPase mediates active acidification of the extracellular medium. In mammalian kidney, the H+ V-ATPase is also required for chloride absorption via ICs (9, 10). In addition, in some species like freshwater fishes or batrachians, the H+ V-ATPase has been proposed to drive Na+ uptake (11, 12). Nevertheless, in all these cells the role of the Na+/K+ P-ATPase has never been questioned because the Na+ pump is thought to be indispensable for sodium extrusion out of the cell, and hence, for proper regulation of cell volume or membrane voltage.

Here, we show that the H+ V-ATPase controls the steady-state cell volume and membrane potential difference in mouse renal ICs as well as the transepithelial sodium and chloride transport through these cells, functions that previously have been ascribed to be part of the cardinal repertoire of cells containing the Na+/K+ P-ATPase.
Our hypothesis, principal cell volume measured in the same
epithelial transepithelial NaCl transport. This process is dependent
features of renal epithelial cells is their ability to mediate vec-
The luminal bicarbonate concentration in nephron segments
expressing pendrin is expected to be very low due to avid reab-
sorption of bicarbonate in the proximal tubule and the loop of
Henle. Hence, we assume that the bicarbonate required for susta-
inactin V-ATPase but not of the Na+/K+ P-ATPase. As indicated
above, two distinct transport pathways account for Na+ trans-
epithelial absorption in the collecting duct: the first depends upon
the epithelial sodium channel ENaC, is electrogenic, amiloride-
sensitive, and thiazide-resistant, and is located in the principal
cells where it drives K+ secretion (24); the second depends upon
the parallel action of pendrin and the Na+-driven Cl-/HCO3−
exchanger Ndebe, is electroneutral, thiourea-sensitive, and ami-
loride-resistant, and is restricted to ICs (6). Inhibition of the Na+/K+
P-ATPase by ouabain abolished transepithelial voltage (Vte) and K+
secretion in isolated microperfused mouse collecting ducts (Fig. 2A and B). Similar effects were obtained by blocking
the epithelial sodium channel ENaC of principal cells with 10−5 M
amiloride. Application of both amiloride and ouabain (even at
a concentration 10-fold higher) had no additional effects on
the activity of the amiloride-sensitive Na+/K+ P-ATPase.

NaCl Transepithelial Absorption by Renal ICs Is Energized by the H+ V-ATPase but Not the Na+/K+ P-ATPase. One of the most prominent features of renal epithelial cells is their ability to mediate vectorial transepithelial NaCl transport. This process is dependent upon the activity of the Na+/K+ P-ATPase that converts the energy derived from metabolism into a steep inwardly directed sodium gradient. This sodium gradient energizes in turn numerous secondary or tertiary active transport systems. We recently examined transport properties of renal ICs on isolated renal tubules and identified an electroneutral thiazide-sensitive transport system in ICs (6). In these cells, NaCl absorption results from the functional coupling of the sodium-independent
anion exchanger pendrin (Pds/Slc26a4) and of the sodium-
dependent chloride bicarbonate exchanger (Ndebe) (Slc4a8).

The Cl−/HCO3− exchanger of the β-IC is pendrin (16), whereas the basolateral exchanger of the α-ICs is a variant of the red cell anion exchanger 1 (A1e) (17). All living cells contain impermeable anionic colloids, which are mostly made up of proteins and organic phosphates. As a result of this, there is a high concentration of nondiffusible anions across the cell membrane, thus generating significant osmotic force between extracellular and intracellular compartments, also known as the Donnan effect. In typical animal cells, the Na+/K+ P-ATPase creates steep gradients for Na+ and K+ across the plasma membrane. Because the plasma membrane has a higher permeability for K+ over Na+ and anions, an outwardly directed K+ leak creates an inside-negative membrane potential. In cells that use a proton pump as bioenergizer, like plant and fungi cells, active expulsion of protons by the pump directly generate an inside-negative membrane potential. In both cases, the inside-negative membrane potential is critical to maintain steady-state cell volume because it drives a steady flow of inorganic anions, mostly Cl−, out of the cell, thereby countering Donnan’s effect. Thus, if the H+ V-ATPase instead of the Na+/K+ P-ATPase plays the role of plasma membrane bioenergizer in renal ICs, then dissipation of the resting membrane potential and cell swelling are expected to occur after inhibition of the H+ V-ATPase but not of the Na+/K+ P-ATPase. Therefore, we first tested the impact of blockade of either the H+ V-ATPase or the Na+/K+ P-ATPase on the volume of β-ICs and principal cells in CCDS isolated from mouse kidney and superfused in vitro (18). We subsequently applied either 40 nM baflomycinA1, a highly specific blocker of the H+ V-ATPase (19), or 100 μM ouabain to block the Na+/K+ P-ATPase, and changes in cell volume were measured by monitoring the quenching of the fluorescent probe calcine using real-time two-photon imaging as described previously (20) (Movie S1). Application of baflomycin A1 led to a significant increase in IC volume (Δ = +42 ± 4%, n = 12), as evidenced by the quenching of calcine fluorescence. In line with our hypothesis, principal cell volume measured in the same tubules was unaffected by baflomycin A1. Conversely, ouabain induced significant cell swelling of principal cells (Δ = +38 ± 4%, n = 9), but not of ICs (Fig. 1A–C).

We next assessed the impact of the H+ V-ATPase on the resting potential of both intercalated and principal cells. Changes in membrane resting potential were monitored by measuring the quenching of fluorescence of the voltage-sensitive dye ANNIINE-6, as previously described (21). Application of baflomycin A1, as shown in Fig. 1D and E, led to a significant depolarization of ICs (Δ = +34 ± 2%, n = 8), indicating that the resting membrane potential in these cells critically depends on this pump. In contrast, baflomycin A1 had no effect on the resting membrane potential of principal cells. Importantly, Muto et al. (22) have reported previously that blockade of the Na+/K+ P-ATPase by ouabain led to a marked depolarization of principal cells, but not of ICs. Taken together, these results indicate that the H+ V-ATPase acts as a bioenergizer of ICs plasma membrane, whereas the Na+/K+ P-ATPase appears to be dispensable in this cell type.

Fig. 1. Effects of inhibition of the H+ V-ATPase on intercalated cell (IC) volume and membrane voltage in the isolated microperfused cortical collecting duct (CCD). (A) Cells were perfused loaded with calcein-AM (green) and Alexa 594-conjugated peanut lectin (red) to identify ICs (red). A differ-
tential interference contrast overlay is shown. (B) Addition of 40 nM baflomycin to the bathing solution caused a significant reduction of intracellular calcine fluorescence in ICs, indicating cell swelling, but not in principal cells (PCs). (C) Summary of baflomycin or ouabain-induced cell volume changes in PCs vs. ICs. Ouabain (100 μM) was added to the bathing solution. *P < 0.05, IC or PC vs. baseline. (D) ANNIINE-6 (green) was loaded from the bath; note its membrane-specific fluorescence along the baso-
lateral cell membranes. The specific apical membrane binding of Alexa 594-
conjugated peanut lectin (red) identified ICs. The image was taken in the presence of 40 nM baflomycin in the bath. (E) In contrast to PCs that are intensely green fluorescent, ICs show diminished ANNIINE-6 fluorescence indicating membrane depolarization. *P < 0.05, IC vs. baseline.
ICs might be exclusively energized by the H+ V-ATPase.

We have previously reported that Ae4/Slc4a9 is specifically expressed in β-ICs (25). We also detected Slc4a9 transcript by RT-PCR in cDNA of CCDs isolated from mouse kidney (Fig. S2).

The localization and transport characteristics of Ae4/Slc4a9 are to some extent controversial. Concerning the different reported sites of Ae4 localization, previous studies lacked validation of the specificity of the Ae4 antibodies used on knockout tissue (26, 27). Even though Ae4 shares more similarities with Na+-HCO3 cotransporters than with Cl-/HCO3- exchangers of the SLCl2 superfamily (28, 29), it has initially been cloned as a 4,4′- diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS)-insensitive Na+-independent Cl-/HCO3- exchanger (27). Subsequently, Ae4 was reported to be rather DIDS sensitive (26). Finally, others reported that Ae4 might mediate Cl-/independent Na+-HCO3 cotransport rather than Cl-/HCO3- exchange (29, 30). To study the function of Ae4 in vivo and to assess its potential role in Na+ extrusion across the basolateral membrane of ICs, we disrupted Slc4a9 in mice (Fig. S3). Slc4a9 KO mice from heterozygous matings followed Mendelian ratios and had no obvious phenotypic abnormalities. Anti-mouse Slc4a9 antibodies detected the presence of Ae4 in cells of the collecting duct from Slc4a9 KO mice by immunohistochemistry (Fig. 3 A and B). The staining was completely abolished in kidney sections from Slc4a9 KO mice demonstrating the specificity of the antisera generated (Fig. 3C). Ae4 labeling was exclusively detected at the basolateral membrane of renal epithelial cells that were identified as β-ICs because of apical expression of pendrin (Fig. 3 D and E). In contrast, α-ICs, which exhibit basolateral Ae1/Slc4a1 staining, were devoid of Ae4 labeling (Fig. 3F). The basolateral localization of Ae4 was further demonstrated by immunogold EM experiments (Fig. 3G and H).

We also used a commercially available rabbit anti-human AE4 antibody (Alpha Diagnostics; catalog no. AE41-A) to examine Ae4 localization in CCDs isolated from rabbit kidney because apical localization of Ae4 has been previously reported in this species using an anti-rat Ae4 antibody (27). Fig. 4 I–K shows Ae4 labeling in a subpopulation of cells also stained with fluorescent peanut lectin, a marker of β-ICs in rabbit (31, 32). Moreover, colocalization studies of Ae4 with zona occludens protein 1 (ZO-1), a marker of the tight junction that delimits apical vs. lateral domains of epithelial cells, confirmed that, similar to mouse, Ae4 staining is restricted to the basolateral membrane of the cells (Fig. 3L and M).

To study the role of Ae4 for NaCl reabsorption in its normal cellular context, CCDs dissected from the kidney of either Slc4a9 KO or Slc4a9 KO/− mice were microperfused in vitro as described (33). Subsequently, the effects of peritubular Na+ removal or addition on IC’s intracellular pH were measured. In CCDs isolated from Slc4a9 KO/− mice, removal of Na+ from the peritubular solutions led to a marked intracellular acidification that was reversible upon restitution of Na+ to the bath (Fig. 4 A–C). These Na+-dependent changes of pHi were not detected when tubules were perfused in CO2/HCO3−-free solutions, indicating that they reflect Na+-coupled HCO3−/H+ exchange. In CCDs isolated from Slc4a9 KO/− mice, Na+-dependent pH changes were dramatically decreased independently of the presence of or absence of CO2/HCO3−, which is in accordance with Na+-dependent HCO3−/H+ exchange mediated by Ae4. However, Slc4a9 deletion did not fully abolish the Na+-dependent HCO3−/H+ exchange, suggesting that another Na+-HCO3− cotransporter coexists in the basolateral membrane of β-ICs (Fig. 4 A–C). We next analyzed whether Ae4 disruption blocks NaCl absorption by these cells. We have shown previously that NaCl absorption by ICs or principal cells can easily be distinguished since the former is amiloride resistant, whereas the latter is amiloride sensitive (6). CCDs isolated from Slc4a9 KO/− mice exhibited significant
Fig. 3. Characterization of Slc4a9 (Ae4) expression. (A and B) Immunohistochemical detection of Slc4a9 (Ae4) protein abundance in the mouse kidney cortex using an anti-peptide antibody specific for the murine Slc4a9 protein in wild-type animals. (A) Low-magnification view of the whole renal cortex. (Scale bar, 200 μm.) (B) High-magnification view centered on a cortical collecting duct (CCD). (Scale bar, 40 μm.) (C) Absence of Slc4a9/Ae4 protein by immunohistochemistry in Slc4a9^{−/−} mice. (Because of the absence of staining, the CCD is indicated by a dotted line.) (Scale bar, 200 μm.) (D) Localization of Slc26a4/pendrin (red) in the kidney cortex of Slc4a9^{−/−} mice. (Scale bar, 20 μm.) (E) Localization of Slc26a4/pendrin (green) and Slc4a9/Ae4 (red) on opposite sides of type-B ICs in mice. (Scale bar, 20 μm.) (F) Localization of Slc4a1/Ae1 (green) and Slc4a9/Ae4 (red) within distal tubuli of the mouse kidney showing that AE1 and AE4 are expressed in different cells. (Scale bar, 40 μm.) (G) Immunogold labeling of mouse kidney sections with an anti-Ae4 antibody shows predominant basolateral staining, 3,000x magnification. (Scale bar, 5 μm.) (H) A 12,000x magnification of Inset in G. (Scale bar, 1 μm.) (I) CCDs microdissected from normal rabbit kidney were stained for Ae4 (red) and either peanut lectin (green in I, J, and K) or the tight junction protein ZO-1 (green in L and M). (Scale bar, 20 μm.) J reveals a Z-stack image of an individual CCD that was obtained via confocal microscopy. (Scale bar, 2 μm.) J–M Images are obtained via 3D reconstruction of individual β-ICs that have been rotated to view the lateral (J and L) and vertical (K and M) perspectives. (Scale bar, 2 μm.)

amiloride-resistant Na⁺ and Cl[−] absorption that was abolished in CCDs isolated from Slc4a9^{−/−} mice (Fig. 4D). The effect in Slc4a9^{−/−} mice was similar to that observed in Slc4a8^{−/−} (Ndcbe) mice. Slc4a8 has previously been demonstrated to mediate the apical entry pathway for Na⁺ in these cells (6) (Fig. 4E). Taken together, these experiments demonstrate that Ae4 mediates basolateral Na⁺-HCO₃[−] cotransport when expressed in its normal environment and that it mediates sodium extrusion from renal β-ICs.

Discussion

The present study provides evidence that mouse renal ICs, unlike most other animal cells, are not energized by the Na⁺/K⁺-P-ATPase, but rather are energized by the H⁺-V-ATPase.

The presence of the Na⁺/K⁺ P-ATPase in renal ICs has been a matter of debate for almost 20 y. At least four independent studies failed to detect immunoreactivity for the Na⁺/K⁺-P-ATPase in either mouse or rat kidneys (34–37). A subsequent study using a strong antigen retrieval technique was able to demonstrate convincing staining of ICs with a set of different antibodies on rat kidney sections (38). However, the authors noticed that the staining was particularly weak in β-ICs of the renal cortex. Until recently, this was considered as evidence that ICs, in contrast to principal cells, can exclusively perform acid/base or chloride but not sodium or potassium transport. We recently challenged this concept by showing that ICs are able to absorb as much Na⁺ as principal cells (6). The latter observation is puzzling if ICs have only few if not no Na⁺/K⁺-P-ATPase molecules. Indeed, this raised the question of the primary energy source required to support such a high Na⁺ transport rate, and it was also unclear how Na⁺ could exit the cell. Here, we show that the parallel action of the H⁺-V-ATPase and of Ae4 mediates net Na⁺ extrusion in a pH-neutral manner. Basolateral transport in ICs of Cl[−] is likely to be mediated via CIC-Kβ/K2 (39–41), as these cells are also characterized by a very high Cl[−] conductance (42). Due to the lack of an antibody to detect Ndcbe in the kidney by immunohistochemistry, we could not directly identify the subtype of ICs that exhibit thiazide-sensitive NaCl uptake. However, as this transport system requires pendrin, which is restricted to β-ICs, and because amiloride-resistant NaCl absorption was abolished by genetic ablation of Ae4, which is also exclusively expressed in β-ICs, most likely the β-ICs mediate this amiloride-resistant, thiazide-sensitive NaCl absorption.

The physiological role of electroneutral NaCl absorption by ICs remains unclear. In normal conditions, most of the NaCl reclamation in the aldosterone-sensitive distal nephron occurs in nephron segments located upstream to the CCD like the connecting tubule (CNT) (43) that also possess β-ICs, which are likely to be able to absorb NaCl as well. Under conditions of dietary sodium restriction, we observed that electroneutral NaCl absorption by ICs was stimulated (6). Supporting a physiological relevance of this system, a recent study demonstrated that the double deletion of both pendrin and NaCl cotransporter (NCC) in the distal convoluted tubule in mice leads to a marked salt-losing phenotype and early mortality (44), whereas the single deletion of each transporter has very mild consequences (45, 46). This suggests that NaCl absorption by ICs complements NCC and contributes to sodium balance regulation. Furthermore, NaCl absorption via the ICs is electroneutral and does affect K⁺ transport, whereas ENaC-mediated Na⁺ absorption drives K⁺ secretion. Thus, it is tempting to speculate that this pathway might be particularly important when animals are volume contracted while at same time K⁺ has to be spared.

Many different species, including Xenopus laevis, frog, fish, and insects comprise cell types that are functionally closely related to mammalian ICs, which are called chloride cells, ionocytes, or mitochondria-rich cells. Different studies have identified “chloride cells” from frog skin or fish gill as analogous to mammalian renal ICs. Interestingly, a recent study demonstrated that these...
cells characterized by plasma membrane expression of a H^+ V-ATPase in many different species.

Methods
A full detailed description of the methods can be found in SI Full Methods.

Ethic Statements. All animal protocols conform to the “Protocol of Animal Welfare” (Amsterdam Treaty; www.eurocb.org/page673.html) and were approved by the Institutional Animal Care and Use review board of Université Pierre et Marie Curie or of the University of Jena.

Microperfusion of Isolated CCDs. Experiments were performed as described previously in detail (6). Changes in pH were monitored using the pH-sensitive dye 2',7'-bis(carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). ICS were distinguished from principal cells by their virtue of binding fluorescein-labeled peanut lectin (PNA) (Vector Labs) as described previously (6). For each tubule, three to four ICS were analyzed, and the mean gray level was measured with the Andor IQ software (Andor Technology). Ion fluxes on isolated CCDs were measured as previously described (6).

Generation of Slc4a9 Knockout Mice. A fragment comprising exons 1–5 of the Slc4a9 gene was isolated from a 129SvJ mouse genomic library. A targeted missense mutation was introduced at nucleotide 777 (C-to-T) in the 3′ untranslated region of theSlc4a9 gene to generate a targeting vector (Stratagene) to generate the targeting vector for homologous recombination. Genotyping was performed by analyzing genomic DNA from tail biopsies. Mice were genotyped either by Southern blot or by PCR.

Northern Analysis. Total RNA was isolated from various tissues of an adult C57BL/6J mouse using the RNeasy kit (Qiagen) according to the manufacturer’s instructions. Ten micrograms of total RNA were separated by electrophoresis and blotted following standard protocols.

Slc4a9/Ae4-Antibody Generation. The Ae4 antisera were raised in rabbits against murine AE4 (GenBank accession no. NM_172830.2) with an N-terminal epitope KLPGQGDFESDHDHEC (and a C-terminal epitope CPEEETEP-NRSEPE). The peptides were coupled via an N- or a C-terminal cysteine (in brackets) to KLH carrier. After immunopurification both antibodies gave consistent results in immunohistochemistry.

Immunostaining and EM of Kidney Sections or Isolated Tubules. Cryosections of 4% (mass/vol) paraformaldehyde–fixed tissues were labeled with antibodies directed against Slc4a1/Ae1 (1:1,000 from guinea pig; a gift from Carsten Wagner, Zurich), Slc26a4/pendrin (1:2,000 from guinea pig; a gift from Carsten Wagner), and Slc4a9/Ae4 (1:500 for immunohistochemistry and 1:1,000 for EM; see above) against standard protocols.

CCDs were microdissected from normal rabbit kidney and fixed in 1:4 dilution of Prefer concentrate (glyoxal fixative) in Dulbecco’s PBS for 15 min (32). CCDs were then stained as previously described (32) with antibodies directed against Ae4 (rabbit anti-human AE4; Alpha Diagnostic International) or AE1:IV12 provided as a kind gift from M. L. Jennings (49) (University of Arkansas, Little Rock, AR). Colabeling was also performed with PNA-FITC (Vector Laboratories) or ZO-1, mouse monoclonal antibody-Alexa Fluor488 (catalog no. 339188; Invitrogen) was accomplished in a separate tertiary incubation. Three-dimensional reconstruction of individual ICS using the Fluoview software was performed to visualize the distribution of Ae4 in β-ICs and Ae1 in α-ICs.

Two-Photon Imaging and Semiquantitative Measurements of Changes in Cell Volume and Membrane Voltage in ICS. CCDs were isolated and perfused as described before (50). Cell volume was monitored using the cell volume marker calcine (Invitrogen) and cell voltage using ANNINE-6, a newly synthesized voltage-sensitive dye designed for ultrafast (1-ms) neural signal detection as described before (21). Preparations were visualized using a two-photon excitation laser scanning confocal fluorescence microscope (TCS SP2 AOBS MP confocal microscope system; Leica Microsystems). Images were collected in time series at 1 Hz and analyzed with the Leica LCS imaging software (LCS 2.61, 1537). Quantification Tools. In some experiments, CCDs were preincubated with baflomycin (40 nM) or ouabain (100 μM; both from Sigma). Each perfused CCD was dissected from a different animal.

ACKNOWLEDGMENTS. We thank Michael Schweizer (Zentrum für Molekulare Neurobiologie Hamburg) for support with the EM. D.E. and coworkers are supported by the Transatlantic Network for Hypertension from the Fondation Leducq, and by Agence Nationale de la Recherche Programme BLANC Grant 2010-R10164DD (to D.E.). J.P.-P. is funded by National Science Foundation.

31. Schuster VL, Bombs SM, Jennings ML (1986) Two types of collecting duct mitochon-