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Recent studies on electronic communication records have shown
that human communication has complex temporal structure. We
study how communication patterns that involve multiple individ-
uals are affected by attributes such as sex and age. To this end,
we represent the communication records as a colored temporal
network where node color is used to represent individuals’ attrib-
utes, and identify patterns known as temporal motifs. We then
construct a null model for the occurrence of temporal motifs that
takes into account the interaction frequencies and connectivity
between nodes of different colors. This null model allows us to
detect significant patterns in call sequences that cannot be ob-
served in a static network that uses interaction frequencies as link
weights. We find sex-related differences in communication pat-
terns in a large dataset of mobile phone records and show the
existence of temporal homophily, the tendency of similar individ-
uals to participate in communication patterns beyond what would
be expected on the basis of their average interaction frequencies.
We also show that temporal patterns differ between dense and
sparse neighborhoods in the network. Because also this result is
independent of interaction frequencies, it can be seen as an ex-
tension of Granovetter’s hypothesis to temporal networks.

social networks | human dynamics

Social networks have been studied since the early 20th cen-
tury, and their significance to the performance and well-being

of individuals is now widely recognized (1, 2). The availability of
electronic communication records—data on mobile phone calls,
e-mails, tweets, and messages in social networking sites—has,
however, created unprecedented opportunities for studying so-
cial networks (3, 4), allowing the analyzing of human interaction
networks at the societal scale (5–7), studying their mesoscale
structure (8), and carrying out experiments with tens of millions
of subjects (9).
Communication records are typically studied by constructing

an “aggregate network” where the nodes correspond to people,
edges denote their relations as inferred from the communication
data, and tie strengths are accounted for by edge weights rep-
resenting communication frequency. Although this approach has
been immensely successful, it disregards all information con-
tained in the detailed timings of communication events. As an
example, individuals who appear highly connected in the aggregate
network might only interact with a small number of acquaintances
at a time (10).
Human communication has been shown to have rich temporal

structure (11–13), and one of the challenges of computational
social science is to understand this rich behavior. Although
temporal inhomogeneities can be partially attributed to circadian
and weekly patterns (12, 14), detailed analysis has shown that
they have more fundamental origins (13, 15–17). Human com-
munication is known to be intrinsically bursty (11, 13, 18, 19) and
contain strong pairwise correlations of interaction times (13).
“Homophily” refers to the well-documented tendency of in-

dividuals to interact with others similar to them with respect to
various social and demographic factors (20–22). Because social
networks act as conduits of information, homophily limits the

information that individuals can receive. Although sex homo-
phily is known to be less strong than homophily by age, race, or
education (22), sex-related differences in communication have
been documented at least in instant messaging (23), Facebook
(24), and the use of both domestic (25) and mobile phones (26).
However, not much is known about patterns involving multiple
individuals, or the influence of factors such as sex or age on
communication patterns. This is the focus of the present article.
Increased awareness about the importance of temporal in-

formation in various empirical datasets has led to the emergence
of the concept of “temporal networks,” a general framework for
studying time-dependent interactions between nodes (27). Here,
we study communication patterns of multiple individuals within
this framework. We represent communication records as a “col-
ored” temporal network where node colors are used to refer
to individuals’ attributes. We then identify “temporal motifs” in
these data to summarize their mesoscale temporal structure (28)
and develop a null model that identifies differences between the
relative occurrence of node colors in temporal motifs so that
these differences are independent of the structure of the ag-
gregate network. This choice of null model assures that all results
presented in this article are independent of any previous results
obtained by studying static communication networks where link
weights correspond to communication frequency.
Using a large dataset of mobile phone calls, we find significant

differences in the occurrence of mesoscale communication pat-
terns. We identify “temporal homophily,” overrepresentation of
temporal patterns that contain similar nodes beyond that pre-
dicted by the structure of the aggregate network. By using event
colors in addition to node colors, we also find consistent and
robust differences between events occurring in dense and sparse
neighborhoods of the aggregate network. Because this result
is independent of the aggregate network, it can be seen as a
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temporal extension of Granovetter’s hypothesis about the cor-
relation of local density and edge weights (29).

Temporal Motifs in Colored Networks
Temporal motifs are analogous to “network motifs” introduced
by Milo and coworkers in 2002 (30, 31) as classes of isomorphic
subgraphs more common in the empirical network than in some
“null model.” Because the use of a null model to define motifs
has proven problematic (32) (see also the discussion in SI Text),
we adopt the practice of Onnela et al. (33) and use the term
“motif”more generally to denote a class of equivalent subgraphs,
independent of their statistical significance in comparison with
some reference.
As defined by Kovanen et al. (28), temporal motifs are equiv-

alence classes of valid temporal subgraphs. To understand what
this means, consider a temporal network GT = ðV ;EÞ where
the events E represent interactions between the nodes V: An
event ei = ðvi;0; vi;1; ti; δiÞ∈E from node vi;0 ∈V to vi;1 ∈V starts at
time ti and has duration δi. (We only consider directed events,
but the changes needed to handle undirected events are negli-
gible.) In this article, we also presume that the temporal network
is colored: There is a mapping ρ : V →C from nodes to the set
of possible colors C. Colors can be used to distinguish different
node types.
Given a time window Δt, two events are “Δt -adjacent” if they

share at least one node and the time difference between them is
no longer than Δt. With adjacency, we can define connectivity:
Two events are “Δt -connected” if there exists a sequence of
Δt -adjacent events between them. A connected “temporal sub-
graph” can now be defined as a set of events where any two
events are Δt -connected. If the events in this set are also con-
secutive for each node, the temporal subgraph is “valid.” [This
constraint is needed to restrain motif counts. Consider an out-
star with n events that all take place within Δt. This out-star

contains
� n
k

�
temporal subgraphs with k events, but only

n− k+ 1 valid temporal subgraphs. The same problem is also
encountered with static motifs, but in that case no equally nat-
ural solution is available (34).]
Finally, a temporal motif m is an equivalence class of valid

temporal subgraphs when two subgraphs are considered equiv-
alent if their underlying colored graphs are isomorphic and their
events occur in the same order (Fig. 1B). Given a temporal
network, “motif count” CðmÞ is the number of valid tempo-
ral subgraphs in equivalence classm. Algorithms described in ref.
28 allow calculating CðmÞ for small motifs in colored temporal

networks with up to 109 events. In the rest of this article, we will
use the term “motif” to refer to colored temporal motifs.

Null Model for Differences Between Node Types
Unfortunately, just knowing motif counts is not very informative:
With nothing to compare with, it is impossible to say whether
a given count is high or low. The approach suggested by Milo
et al.—and the de facto standard in motif analysis—is to com-
pare motif counts to those in a null model, a suitably randomized
version of the empirical data. It is, however, far from obvious
what exactly can be learned from such comparison (see ref. 32
and SI Text). We argue that the key to using null models is to
craft the difference between the empirical data and the null
model so that it is explicitly known and matches the research
question at hand. It is this difference that gives an interpretation
for the deviation between CðmÞ and ~CðmÞ.
Thus, to quantify the effect of node types, we construct a null

model where the reference count ~CðmÞ can be interpreted as the
weighted average of untyped motif counts, with weighting done
by the structure of the aggregate network (Materials and Meth-
ods). This null model tests the null hypothesis that motif counts
do not depend on node types, given the structure of the weighted
aggregate network. Conditioning on the aggregate network is
crucial, as it means that any difference observed between CðmÞ
and ~CðmÞ cannot be explained by differences in the number of
nodes of each type, variations in the activity of node types, or
preferred connectivity patterns. In other words, the results are
purely temporal: They are independent of anything observable in
the aggregate network.

Evaluating Deviation from the Null Model. To tell whether the null
hypothesis is true—that there are no differences between node
types given the aggregate network—we calculate the z scores as
follows:

zðmÞ=CðmÞ− μ
�
~CðmÞ�

σ
�
~CðmÞ�

;

where μð~CðmÞÞ and σð~CðmÞÞ are the mean and SD of the count
in the null model. If the null hypothesis is true, z scores are
expected to have zero mean and unit variance.
One should be cautious in making conclusions based on z

scores beyond falsifying the null hypothesis. As z scores depend
on data size, it is not uncommon to find motifs with jzðmÞj � 0
in large datasets; this only means that the null hypothesis is
even more unlikely to be true. Neither should one conclude that

A B C

Fig. 1. (A) A schematic presentation of two temporal networks. The upper one has clear temporal structure, whereas the lower one is random; however,
both give rise to the same aggregate network. (B) Two examples on identifying temporal motifs. Starting from a temporal network (Left), we first identify
temporal subgraphs (Center), and then the temporal motif corresponding to each subgraph (Right). Note that temporal motifs do not contain information
about the identities of nodes or the exact times of events, but do retain information about node colors and the temporal order of events. (C) The six possible
uncolored two-event temporal motifs whose colored variants are used in our analysis.
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motifs with zðmÞ≈ 0 are “explained” by the null model—the null
model was just proven to be false, so it cannot explain our
observations (SI Text).
However, because we can interpret the deviation between the

null model and the empirical data, we can use the null model
to measure effect size. We do this by calculating the ratio
rðmÞ=CðmÞ=μð~CðmÞÞ. (The ratio score is an unstandardized
measure of effect size. Such measures are generally considered
to be the best practice in reporting results; see, e.g., ref. 35.)
Because ~CðmÞ is the motif count under the null hypothesis that
node types have no effect, rðmÞ reveals how much more or less
common a motif is because of node types.

Synthetic Data. To illustrate what this null model can reveal, we
first apply it to synthetic data where we know exactly what there
is to find. These synthetic data have two types of nodes, red and
blue, with events occurring in such a fashion that those causal
chains are more common where the first event takes place be-
tween nodes of the same color (see Materials and Methods for
details). This pattern, however, is only visible in the event data;
the weighted aggregate network shows no difference between red
and blue nodes.
Fig. 2 shows the z-score distribution for all two-event motifs in

these synthetics data. As expected, the null hypothesis is false:
There are two peaks at z≈± 16 corresponding to the causal two
chains. The motifs with z≈ 16 are those where the first two nodes
have the same color, and these motifs have rðmÞ≈ 1:18 : They
are 18% more common than expected if there were no differ-
ence between node types.

Results
We now turn to study a mobile phone dataset that contains 600
million calls during a period of 6 mo between 6.3 million ano-
nymized customers (Materials and Methods). As the data include
information on the time and duration of calls, it can be repre-
sented as a temporal network. Node types are formed by com-
bining the sex, age group, and payment type (prepaid or postpaid
mobile subscription plan; Materials and Methods) of customers.
Our analysis focuses on two-event motifs for simplicity (Fig.

1C). Larger motifs are not only more demanding computation-
ally but also more laborious to analyze: There are already 56,448

different two-event motifs with the 24 node types created by
combining sex, age group, and payment type. All results have
been calculated with Δt= 10 min, which allows reasonable time
for intentional reactions but should not include too many ser-
endipitously simultaneous events. The results are not, however,
particularly sensitive to the value of Δt (see SI Text for details).

Node Types Affect Motif Counts. We first check whether the null
hypothesis is true or false—whether node types affect motifs
counts beyond what can be expected based on the aggregate
network—by plotting the distribution of z scores (Fig. 3A). The
distribution does not have zero mean or unit variance; instead,
about 35% of motifs have jzj> 1:96. The null hypothesis is clearly
false, and we can conclude that motif counts are not independent
of node types.
For comparison, Fig. 3B shows the same distribution after

shuffling node types, and Fig. 3C after shuffling event types
(Materials and Methods). In both cases, the distributions suggest
that the null hypothesis is true. Indeed, after randomizing node
types there can be no differences between them even though the
data still contain the same “untyped” temporal subgraphs as
the original data. The time-shuffled data, on the other hand, have
exactly the same aggregate network as the original data. However,
because event times are now uncorrelated, all differences be-
tween node types are explained by the structure of the aggre-
gate network.

There Is Temporal Homophily. There is temporal homophily in
interaction patterns beyond the homophily observed in the
aggregate network.
Fig. 3A shows that there are differences between node types;

we will now look at what these differences are. We first investi-
gate whether homophily also manifests at the level of contact
sequences, i.e., whether there is temporal homophily, a tendency
of similar individuals to jointly participate in interaction patterns
beyond the homophily observed in the aggregate network.
To this end, we calculate the average rðmÞ of two-event motifs

where all nodes have the same age group, sex, or payment type,
or agree for all of these attributes. This average is then compared
with the average rðmÞ of all other motifs. The results are pre-
sented in Table 1. Note that the values shown in this table are
averages over a large number of motifs; as we will soon show,
individual motifs often exhibit significantly larger variations. For
motifs involving only two individuals, the only statistically sig-
nificant difference is an underexpression of the returned-call motif
for participants of the same payment type. This is due to frequent
patterns where a prepaid customer calls a postpaid customer, who
then immediately calls back, as illustrated in Fig. 4A.

Fig. 2. The null model correctly identifies temporal differences in synthetic
data. The figure shows the distribution of z scores for all two-event motifs,
averaged over 50 datasets. For most motifs z≈ 0 because there are no dif-
ferences between node colors. The peak at z≈ 16 corresponds to the four
causal chains where the first event occurs between nodes of the same color.
Because expected motif count is defined by the average count of uncolored
motifs, the peak at z≈−16 contains the four remaining causal chains where
the first event occurs between nodes of different color.

A B C

Fig. 3. The empirical data contain temporal differences between node
types that are destroyed by randomizing the data. The plots show the dis-
tribution of z scores for all two-event motifs with CðmÞ≥ 50 in (A) the first
month of empirical data, (B) the same data after shuffling node types, and
(C) after shuffling event times. The gray curve shows a Gaussian distribution
with zero mean and unit variance for reference.
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More complex motifs—chains and stars—exhibit more evidence
of temporal homophily. Motifs where the participants agree with
respect to all three attributes are significantly more common, and
star-like motifs are overrepresented also when the participants
agree with respect to only one attribute. As illustrated in Fig. 4B,
out-stars also exhibit an interesting pattern where the ages of the
two recipients are correlated. The strongest effect is typically ob-
served for similarity of payment type; note, however, that payment
type is likely to correlate with various other socioeconomic factors.
Results for text messages are qualitatively similar (SI Text).

Chains and Stars are Overexpressed for Females. To analyze sex
differences in temporal motifs, we calculate the average rðmÞ sep-
arately for motifs where all participants are either male or female.
The results are presented in Table 2. No difference is observed for
repeated and returned calls, but for all other motifs the all-female
case is overexpressed, and all-male case slightly underexpressed.

Local Edge Density Correlates with Temporal Motifs. The algorithm
used for identifying temporal motifs also allows distinguishing

between different event types (28). Here, we use event types to
study the correlation between local network density and tem-
poral patterns. This is closely related to Granovetter’s hypothesis
(29) that states that in social networks there is a positive corre-
lation between edge weights and local network density, where the
latter can be measured for example by the number of triangles
around an edge. Granovetter’s hypothesis has already been verified
in mobile phone call data (5). Because our analysis factors out the
entire structure of the weighted aggregate network, the results
presented here are independent of this classic hypothesis.
We use clique percolation (36) to create a dichotomy for local

edge density: Event ei = ðvi;0; vi;1; ti; δiÞ is a “dense event” if the
edge ðvi; vjÞ of the aggregate network is inside a four-clique
community, and otherwise ei is a “sparse event.” We find clear
and robust differences in temporal behavior between dense and
sparse edges, as summarized in Table 3. Single-edge motifs—
repeated and returned calls—are more common on sparse edges,
whereas all other two-event motifs follow an opposite pattern
and are relatively more common in dense parts of the network.
One possible explanation is that sparse parts of the network
offer less opportunities formotifs that occur on two edges.Were this
the case, one would expect motifs with one dense and one sparse
event to lie between the other cases; this is, however, not what
we observe. The order of these four cases is also very robust: If we
also include node types, the same pattern is observed for nearly all
combinations of node types. This is remarkable, as each combina-
tion of node types essentially constitutes an independent sample.
Granovetter’s hypothesis says that dense edges have on average

higher weights. However, in addition to having higher weights, we
find that dense edges are more commonly related to “group talk,”
temporal patterns involving more than two individuals.

Discussion
Human relations are inherently dynamic, and at the highest time
resolution they manifest as sequences of interactions. Electronic
communication records have proven especially useful for study-
ing behavioral patterns of single individuals and relating this to
the functioning of the social system as a whole; one example is
the ubiquity of burstiness in human communication (11) and its
effect on spreading dynamics (15, 16, 18, 37). In this article, we
begin to assess “mesoscale” temporal patterns, group interactions
that cannot be observed in the static network representation.
The mobile phone data were found to have rich mesoscale

temporal structure. Although some results are easy to explain,
such as the relative prevalence of repeated calls between prepaid
and postpaid users, other equally robust and consistent results
are less easy to account for, such as the correlation of recipients’
ages observed for out-stars. The connection between temporal
motifs and local edge density was also found to be very robust—
the same pattern is observed for nearly all combinations of node
types—and shows that dense and sparse edges have different
roles in communication.
Both homophily and Granovetter’s hypothesis work to con-

strain the flow of information and ideas in social networks. The
results presented in this article suggest that this constraining
effect is in fact stronger than can be observed in any static net-
work representation alone.
Finally, we note that the framework introduced in this article

is not limited to social systems but can be applied to other
complex systems for which time resolution data are available, for
example to study human mobility (38). The primary constraint is
that the concepts introduced in ref. 28 are currently applicable
only to data where nodes are involved in at most one event at a
time, or where events have no duration. What makes the analysis
particularly useful is the fact that any temporal differences iden-
tified are independent of the aggregate network, and therefore
complementary to any existing information on the weighted
aggregate network.

Table 1. Temporal motifs reveal the existence of temporal
homophily

Motif A G P A ∧ G ∧ P

Repeated call 1.08, 1.11 1.12, 1.09 1.09, 1.13 1.09, 1.11
Returned call 1.04, 1.01 1.02, 1.01 0.98, 1.06 1.02, 1.02
Noncausal chain 1.05, 1.03 1.05, 1.03 1.05, 1.01 1.18, 1.03
Causal chain 1.03, 1.02 1.04, 1.02 1.05, 0.98 1.16, 1.02
Out-star 1.12, 1.03 1.06, 1.03 1.07, 1.01 1.32, 1.04
In-star 1.09, 1.04 1.07, 1.04 1.03, 1.06 1.16, 1.04

The columns correspond to motifs where all participants are similar with
respect to different attributes: age (A), sex (G), payment type (P), or all three
(A ∧ G ∧ P). The first value in each cell is the mean rðmÞ for motifs where all
nodes have the same attribute value (for example, all have the same age in
column A). The second value gives the mean for all other motifs. If the first
value is larger than the second, the motif has homophily with respect to that
attribute: Motifs where all nodes have the same value are relatively more
common than others. Welch’s t test was used to test for equality; bold
denotes P< 0:01 and italic denotes P< 0:05 (with Bonferroni correction for
42 hypotheses, including those only shown in SI Text).

A

B

Fig. 4. The most common temporal motifs exhibit shared properties. (A)
The four most common returned-call motifs. The numbers inside the nodes
denote the age group (18–26, 27–32, 33–38, 39–45, 46–55, or 56–80; the
value shown is the weighted average rounded to closest integer). The open
nodes denote postpaid and filled prepaid customers; red denotes female,
and blue, male. The arrows denote events, and the numbers next to them
show their temporal order. In all four cases, the first call takes place from the
prepaid (filled node) to the postpaid (open node) customer. The number
below each motif shows the relative occurrence compared with the null
model. (B) The four most common out-star motifs. In all four cases, the two
receivers have the same age, a pattern that is typical for the most common
out-stars.
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Materials and Methods
Mobile Phone Data. The data used in this article consist of 6mo of anonymized
mobile phone records with a total of 625 million calls and 207 million short
message service (SMS) messages. We divide the data into 6 consecutive
months (periods of 30 d) and repeat the analysis separately in each period to
make sure the results are consistent in time. The number of calls (SMS) in
these periods ranges from 99.8 to 108.5 million (32.8–37.0 million).

Node types are based on customer metadata, and a type is a combination
of three factors. The first two factors are sex and age, with age represented
by six intervals with ∼1 million users in each: 18–26, 27–32, 33–38, 39–45,
46–55, and 56–80. The third factor is payment type, which can be either
“postpaid” or “prepaid.” Postpaid users are billed for past calls, whereas
prepaid users pay for their calling time beforehand. Prepaid services have
limited calling time and are typically more expensive, and prepaid customers
therefore tend to make fewer and shorter calls. Even though studying the
effect of payment type is not our main interest, we include it in the node
type because it can be expected to affect customer behavior, and to be
correlated with various socioeconomic factors.

Combining sex, payment type, and age gives a total of 2× 2× 6= 24 dif-
ferent node types. The results have been calculated for the 6.22 million users
with fully known type and with contract assigned to only one phone num-
ber. (The data contain a total of 10 million unique users. The metadata are,
however, based on contract records, and in cases where there are multiple
phone numbers per contract we cannot uniquely assign the metadata to
single person. Therefore, we discard all users connected to such contracts. Of
the remaining 7.81 million users, 6.29 million have valid sex and age in-
formation. A further 68,000 users were discarded because their age was
under 18 or over 80.)

Shuffling Node Types and Event Times. We use two different kinds of shuffled
data to illustrate that the null model correctly identifies a true negative result.
The “node-type shuffled data” is created by shuffling node types. That is, if
ci is the type (color) of node vi in the empirical data, in the shuffled data this
node has type cσðiÞ, where σ is a random permutation of node indices.

The “time-shuffled data” are created in a similar fashion: If σ is a permuta-
tion of event indices, in the shuffled data event ei occurs at time tσðiÞ and has
duration δσðiÞ. Because we need to enforce the constraint that nodes have no
more than one event at a time, a standard shuffling algorithm cannot be used
to create the time-shuffled data. Instead, we use a Markov chain Monte Carlo

algorithm that switches the times of two randomly selected events if the switch
does not result in some node having overlapping events.

Synthetic Temporal Network Data. To construct the synthetic data, we first
create an undirected regular graph with N= 104 nodes, each connected to
k= 5 random nodes, and assign node colors independently of network to-
pology so that there are N/2 red and N/2 blue nodes.

Events between the nodes are generated with the following process. On
every time step, a “sporadic event” occurs on an edge with probability
P = 0:0001. If the sporadic event takes place between two nodes of the same
color, say from i to j, then for the next 100 time steps the recipient j has an
additional probability of P to initiate a “triggered event” toward a random
neighbor other than i. Event durations are drawn from a geometric distri-
bution with mean μ= 10, and nodes may only participate in one event at
a time. New events are generated from this process until there are on av-
erage 100 events per edge. Motifs are identified with Δt = 100.

Note that the distinction between sporadic and triggered events is only
made when generating the data; the final data have only one kind of events.
Because the underlying network is random and regular, and because the
occurrence of neither sporadic nor triggered events on a given edge depends
on node colors, this process results in a temporal network where all edges
have on average the same number of events.

Null Model for Assessing the Influence of Node Types. Let GA = ðV ,LÞ be the
aggregate network, and let ℓ= ½ði1,j1Þ, . . . ,ðin,jnÞ� denote a location, an or-
dered sequence of edges of the aggregated network, where ðik ,jkÞ∈ L ∀k.
If we presume that events take place on these edges in the order given,
there is a unique temporal motif mℓ that corresponds to location ℓ. We take
into account the structure of the aggregate network by modeling the motif
count CℓðmÞ on ℓ as a random variable under the null hypothesis H0 that
motif count at ℓ does not depend on node types.

What can the motif count depend on if not node types? There are two
possible factors: the weights of the edges in ℓ, and the network structure
outside ℓ. We approximate the latter effect to be negligible: The occurrence
of a motif on ℓ does not depend on events taking place on other edges. (The
largest approximation comes from not taking into account events on adja-
cent edges that could render temporal subgraphs on ℓ invalid.)

Edge weights, however, are likely to correlate strongly with motif counts.
Let w= ½wi1 j1 , . . . ,winjn � denote a sequence of edge weights in the aggregate
network, and wℓ, the weight sequence of the edges in ℓ. Assuming H0 is true
and given the above approximation, CℓðmÞ is independent of node types and
depends only on wℓ. We thus write CℓðmÞ∼ Pðmℓ*, wℓÞ, where m* is motif m
without node types—in other words, CℓðmÞ follows a distribution parame-
terized by mℓ* and wℓ. The distributions Pðm*, wÞ are estimated from data.
By summing over all locations for which mℓ =m, we obtain the total motif
count under the null hypothesis:

~CðmÞ=
X

ℓjmℓ=m

~C ℓðmÞ:

In SI Text, we present an algorithm for generating samples of ~CðmÞ, and also
prove that ~CðmÞ is an unbiased estimate of CðmÞ when H0 is true.

Because each distribution Pðm*,wÞ is estimated from the data, large
dataset is a necessity. In addition, edge weights for different nodes types
should not be too disparate: If the edge weights are significantly higher for
some node types, Pðm*,wÞwill be estimated using only these node types and
therefore sampling will always produce ~C ℓðmÞ≈CℓðmÞ. However, this means
that the estimates produced by the null model are conservative, erring on
the side of smaller effect. For the same reason, the results are not biased by
rare high-weight edges: If there is only one location with weight sequence
w, the distribution Pðm*,wÞ is a δ function and sampling will always produce
~C ℓðmÞ=CℓðmÞ.

Source Code. The program used to enumerate temporal motifs and calculate
the null model is available as free software: https://github.com/lkovanen/
TMFinder.
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Table 2. All-female star and chain motifs are more common
than respective all-male motifs

Motif Female Male

Repeated calls 1.11, 1.11 1.13, 1.10
Returned calls 1.02, 1.01 1.02, 1.02
Noncausal chain 1.08, 1.02 1.01, 1.04
Causal chain 1.08, 1.01 0.98, 1.03
Out-star 1.10, 1.03 1.01, 1.04
In-star 1.11, 1.03 1.01, 1.05

The first value in each cell is the average rðmÞ for motifs where all nodes
have the same sex, and the second value is the average rðmÞ for all other
motifs. Statistical testing was done as in Table 1 (with Bonferroni correction
for 24 hypotheses, including those only shown in SI Text).

Table 3. The median rðmÞ over all months for different
two-event motifs when the events occur on either dense (D) or
sparse (S) edge

Motif D-D S-S S-D D-S

Repeated calls 0.88 1.063 — —

Returned calls 0.905 1.052 — —

Noncausal chain 1.110 0.994 0.890 0.875
Causal chain 1.082 1.005 0.903 0.892
Out-star 1.123 1.015 0.844 0.838
In-star 1.121 0.970 0.886 0.879

An edge is denoted dense if it is contained inside a four-clique community;
all other edges are sparse. For the first two motifs, both events take place on
the same edge, so they necessarily have the same type.
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